

ibaLink-VME VMEbus-Schnittstellenkarte

Handbuch

Ausgabe 2.1

Messsysteme für Industrie und Energie www.iba-ag.com

Hersteller

iba AG Königswarterstr. 44 90762 Fürth Deutschland **Kontakte** Zentrale +49 911 97282-0 Telefax +49 911 97282-33 Support +49 911 97282-14 E-Mail: iba@iba-ag.com

Web: www.iba-ag.com

Weitergabe sowie Vervielfältigung dieser Unterlage, Verwertung und Mitteilung ihres Inhalts sind nicht gestattet, soweit nicht ausdrücklich zugestanden. Zuwiderhandlungen verpflichten zu Schadenersatz.

© iba AG 2023, alle Rechte vorbehalten.

Der Inhalt dieser Druckschrift wurde auf Übereinstimmung mit der beschriebenen Hard und Software überprüft. Dennoch können Abweichungen nicht ausgeschlossen werden, so dass für die vollständige Übereinstimmung keine Garantie übernommen werden kann. Die Angaben in dieser Druckschrift werden jedoch regelmäßig aktualisiert. Notwendige Korrekturen sind in den nachfolgenden Auflagen enthalten oder können über das Internet heruntergeladen werden.

Die aktuelle Version liegt auf unserer Website www.iba-ag.com zum Download bereit.

Schutzvermerk

Windows® ist eine Marke und eingetragenes Warenzeichen der Microsoft Corporation. Andere in diesem Handbuch erwähnte Produkt- und Firmennamen können Marken oder Handelsnamen der jeweiligen Eigentümer sein.

Zertifizierung

Das Produkt ist entsprechend der europäischen Normen und Richtlinien zertifiziert. Dieses Produkt entspricht den allgemeinen Sicherheits- und Gesundheitsanforderungen.

Weitere internationale landesübliche Normen und Richtlinien wurden eingehalten.

CE

Version /	Datum	Änderung	Kap. / Seiten	Autor	Version
Rev.			-		HW/FW
2.1	09-2023	Lieferumfang			

Inhaltsverzeichnis

1	Zu diesem Handbuch					
	1.1	Zielgruppe	5			
	1.2	Schreibweisen	5			
	1.3	Verwendete Symbole	6			
2	Einleit	ung	7			
3	Liefer	umfang	9			
4	Siche	heitshinweise	9			
	4.1	Bestimmungsgemäßer Gebrauch	9			
	4.2	Spezielle Sicherheitshinweise	9			
5	Syste	nvoraussetzungen	.10			
	5.1	Hardware	. 10			
	5.2	Software	. 10			
	5.3	SPS und Regelsysteme	. 10			
6	Montie	eren und Demontieren der Baugruppe	. 11			
	6.1	Einsetzen der Karte	11			
	6.2	Entfernen der Karte	. 12			
7	Geräte	ebeschreibung	.13			
	7.1	Anschlüsse und Bedienelemente der Frontplatte	. 13			
	7.1.1	Anschlüsse Lichtwellenleiter	. 13			
	7.1.2	Drehschalter	. 14			
	7.1.3	Status-LEDs	. 15			
	7.2	Betriebsarten	. 16			
	7.2.1	ibaNet 3Mbit (Mode 0)	. 16			
	7.2.2	ibaNet 3Mbit mit Diagnose (Mode 1)	. 17			
	7.2.3	ibaNet 3Mbit P2P (Mode 8)	. 18			
	7.2.4	ibaNet 3Mbit P2P mit Diagnose (Mode 9)	. 18			
	7.2.5	ibaNet 32Mbit P2P (Mode 4)	. 19			
	7.2.6	ibaNet gemischter Modus - 32Mbit P2P senden und 3Mbit empfangen (Mode 5)	. 20			
	7.2.7	32Mbit Flex (Mode 15)	. 22			
	7.3	DIP-Schalter auf der Karte	. 23			
	7.3.1	Bedeutung der DIP-Schalter	. 24			
	7.3.2	VME-Startadresse einstellen	. 26			
8	Einste	llung der Host-Systeme	.27			
	8.1	Einstellungen für ALSPA CP80/A800 (AEG Logidyn D)	. 27			
	8.1.1	Karteneinstellungen	. 28			
	8.1.2	Schalter-Einstellungen auf der Frontplatte der ibaLink-VME	. 28			
	8.2	Einstellungen für ALSPA C80 HPC (Logidyn D2)	. 29			
	8.2.1	Projektierungshinweise für ibaLink-VME mit ALSPA C80 HPC (Logidyn D2	29()			
	8.2.2	Karteneinstellungen	. 29			
	8.2.3	Einsatz der ibaLink-VME im SM128 Kompatibilitätsmodus	. 30			
	8.2.4	Einsatz der ibaLink-VME im 32Mbit P2P-Modus	. 31			

iba

	8.3	Einstellungen für HPCi	36
	8.3.1	Projektierungshinweise	36
	8.3.2	Karteneinstellungen	36
	8.3.3	Einsatz der ibaLink-VME im SM128-Kompatibilitätsmodus	37
	8.3.4	Einsatz der ibaLink-VME im 32Mbit P2P- oder 32Mbit Flex-Modus	38
	8.3.5	Einsatz der ibaLink-VME im gemischten Modus: 32Mbit P2P senden	20
	0 1	Einstellungen für CE 00/70	J9 11
	0.4 9.1.1	Einstellungen für GE 90/70	41
	0.4.1 8 / 2	Finstellungen auf der Frontplatte der ihal ink V/ME	41
	0.4.2 8 5	Einstellungen für SIMATIC TDC	41
	0.0	Projektierungshinweise für SIMATIC TDC	42
	0.J.1 8.5.2	Finstellungen auf der Karte	42 11
	0.J.Z 8 5 3	Einstellungen auf der Frontplatte der ibal ink V/ME	44 11
•	0.0.0		44
9	System	ntopologien	45
	9.1		45
	9.1.1	Konfiguration im 3Mbit-Modus	45
	9.1.2	Konfiguration im 32Mbit P2P-Modus (4) und gemischten Modus (5)	46
	9.1.3	Konfiguration im 32Mbit Flex-Modus	49
	9.2	ibaLogic-Applikation	54
	9.2.1	Konfiguration ibaLogic-V3	54
	9.2.2	Konfiguration ibaLogic-V4	55
	9.3	Kaskadenbetrieb 3Mbit	57
	9.4	Kaskadenbetrieb 32Mbit Flex	59
	9.5	E/A-Betrieb	60
10	Die VM	Ebus-Schnittstelle	61
	10.1	Belegung der Adressen	61
	10.2	Allgemeiner Überblick	62
	10.3	Steuerung-, Status-, Versionsregister	63
	10.4	SM128 RX/TX	64
	10.5	4K RX/TX Puffer	65
	10.5.1	32Mbit P2P	65
	10.5.2	32Mbit Flex	65
11	Techni	sche Daten	66
	11.1	Hauptdaten	66
	11.2	Maßblatt	67
	11.3	Beispiel für LWL-Budget-Berechnung	68
12	Suppor	rt und Kontakt	70

1 Zu diesem Handbuch

Dieses kompakte Handbuch liefert Ihnen die erforderlichen Informationen für den Umgang mit der Baugruppe ibaLink-VME.

Weitere Informationen bezüglich der softwaretechnischen Einbindung und Verwendung des Gerätes finden Sie entweder in speziellen Projektierungsanleitungen oder in den Handbüchern zu unseren Softwareprodukten.

1.1 Zielgruppe

Im Besonderen wendet sich dieses Handbuch an ausgebildete Fachkräfte, die mit dem Umgang mit elektrischen und elektronischen Baugruppen sowie der Kommunikationsund Messtechnik vertraut sind. Als Fachkraft gilt, wer auf Grund seiner fachlichen Ausbildung, Kenntnisse und Erfahrungen sowie Kenntnis der einschlägigen Bestimmungen die ihm übertragenen Arbeiten beurteilen und mögliche Gefahren erkennen kann.

1.2 Schreibweisen

In diesem Handbuch werden folgende Schreibweisen verwendet:

Aktion	Schreibweise
Menübefehle	Menü <i>Funktionsplan</i>
Aufruf von Menübefehlen	Schritt 1 – Schritt 2 – Schritt 3 – Schritt x Beispiel: Wählen Sie Menü Funktionsplan – Hinzufügen – Neuer Funktionsblock
Tastaturtasten	<tastenname> Beispiel: <alt>; <f1></f1></alt></tastenname>
Tastaturtasten gleichzeitig drücken	<tastenname> + <tastenname> Beispiel: <alt> + <strg></strg></alt></tastenname></tastenname>
Grafische Tasten (Buttons)	<tastenname> Beispiel: <ok>; <abbrechen></abbrechen></ok></tastenname>
Dateinamen, Pfade	"Dateiname" "Test.doc"

1.3 Verwendete Symbole

Wenn in diesem Handbuch Sicherheitshinweise oder andere Hinweise verwendet werden, dann bedeuten diese:

Gefahr! Stromschlag

Wenn Sie diesen Sicherheitshinweis nicht beachten, dann droht die unmittelbare Gefahr des Todes oder schwerer Körperverletzung durch einen Stromschlag!

Gefahr!

Wenn Sie diesen Sicherheitshinweis nicht beachten, dann droht die unmittelbare Gefahr des Todes oder der schweren Körperverletzung!

Warnung!

Wenn Sie diesen Sicherheitshinweis nicht beachten, dann droht die mögliche Gefahr des Todes oder schwerer Körperverletzung!

Vorsicht!

Wenn Sie diesen Sicherheitshinweis nicht beachten, dann droht die mögliche Gefahr der Körperverletzung oder des Sachschadens!

Hinweis

Ein Hinweis gibt spezielle zu beachtende Anforderungen oder Handlungen an.

Tipp

Tipp oder Beispiel als hilfreicher Hinweis oder Griff in die Trickkiste, um sich die Arbeit ein wenig zu erleichtern.

Andere Dokumentation

Verweis auf ergänzende Dokumentation oder weiterführende Literatur.

2 Einleitung

Die Baugruppe ibaLink-VME ist eine multifunktionale, bidirektionale Schnittstellenkarte für den Einsatz in VMEbus-basierten SPS- und Rechnersystemen. Sie ist geeignet für Datenerfassungs- und Prozessmonitoring-Anwendungen sowie für Anwendungen mit Steuerungssystemen, wie beispielsweise der Soft-SPS ibaLogic.

ibaLink-VME ist das Nachfolgemodell der Baugruppe ibaLink-SM-128V-i-20 (hier auch als SM128 bezeichnet) und vollständig kompatibel zu den bisherigen Funktionen im 3Mbit-Modus. Darüber hinaus bietet ibaLink-VME neue Funktionalitäten mit den ibaNet-Protokollen 32Mbit und 32Mbit Flex.

Die wesentlichen Merkmale der Baugruppe sind:

- □ 1 bidirektionaler LWL-Anschluss (Channel 1) für Ein-/Ausgabesignale
- 1 unidirektionaler LWL-Anschluss (Channel 2) f
 ür Ausgabesignale
- □ ibaNet-Protokolle 3Mbit, 32Mbit und 32Mbit Flex
- □ Flexible Datenauswahl und Einstellung der Datenrate mit 32Mbit Flex
- □ Kaskadierung von bis zu 15 Geräten im 32Mbit Flex-Modus an Channel 1
- volle Kompatibilität zu allen ibaFOB-Karten
- volle Kompatibilität zu den Prozessanschlüssen der ibaPADU-8-IO und ibaNet750-BM-Serien
- Konsistenzmodus
- Datenaustausch zwischen 2 Systemen im Peer-to-Peer-Modus (P2P)

Die Baugruppe kann in allen gängigen VME32- und VME64-Systemen (6 HE) eingesetzt werden. Die Baugruppe arbeitet mit einer Versorgungsspannung von 5V (vom VMEbus).

VME-Spezifikation gemäß ANSI VITA 1-1994:

- Unterstützte Adressierung: A24, A32, A40 und A64
- □ Unterstützte Datenformate: 8/16/32 Bit (D08/D16/D32/MD32)
- Unterstützter Blocktransfer: 8/16/32 Bit (BLT)
- Unterstützter Blocktransfer: 64 Bit (**MBLT**)
- Unaligned Transfer (**UAT**) und Read-Modify-Write (**RMW**)

Nicht unterstützt werden die folgenden Modi:

- Autokonfiguration (AutoSlotID)
- 2eVME/2eSST

Die Baugruppe ist am VMEbus eine passive Slave-Karte, d.h. es erfolgen keine aktiven Master-Zugriffe am VMEbus. Sie belegt am VMEbus 256 kByte Adressraum.

Konsistenzmodus

Der Austausch der Daten zwischen VME-Seite und LWL-Seite erfolgt asynchron. Dies bedeutet, dass ein Datenblock, der auf der VME-Seite geschrieben wird, nicht unbedingt

als ein Block im Lichtwellenleiter gesendet wird. Je nach Art des Schreibzugriffs (Byte, Word oder Dword) werden Datenblöcke nur teilweise konsistent übertragen.

Ist es erforderlich, dass konsistente Datentelegramme in einem Block übertragen werden, kann mittels DIP-Schalter ein spezieller Konsistenzmodus aktiviert werden. Dann erfolgt ein Update der VME-Empfangs- und Sendepuffer nur, wenn die Daten in ein spezielles Update-Register geschrieben werden. Auf diese Weise können Blöcke konsistenter Daten zusammengehalten werden.

Anwendungsbereiche

3Mbit-Protokoll

Unter Verwendung des ibaNet-Protokolls 3Mbit können alle iba-Geräte, die dieses Protokoll unterstützen, ein- und ausgangsseitig angeschlossen werden. Damit sind folgende Anwendungen möglich:

- Rechnerkopplung zu SIMATIC S5, SIMIKRO MMC und SIMADYN D (ibaLink-SM-64-io und –SD-16)
- □ Einfache Ein- und Ausgabe von Peripheriesignalen (z.B. ibaPADU-8, -16, -32, -8-O, ibaNet750-BM)
- Ankopplung an ibaLogic-V3, ibaLogic-V4, ibaPDA (alle ibaFOB-Karten), auch kaskadierbar mit ibaPADU und ibaNet750
- Bidirektionale Ankopplung an Profibusmaster, z.B. SIMATIC S7 (ibaBM-DPM-S-64)
- □ Vervielfältigung der Ausgangssignale (ibaBM-FOX-i-3o-D)
- **オ** Siehe Beschreibung in Kap. 7.2.1 ff.

32Mbit P2P-Protokoll

Mit dem schnellen P2P-Protokoll sind, abhängig vom Telegrammtyp, folgende Verbindungen möglich:

- □ Schnelle Rechnerkopplung (bis zu 50 µs) zwischen VMEbus-basierten Automatisierungssystemen, z.B. SIMATIC TDC, HPCi, LOGIDYN D (ibaLink-VME)
- □ Schnelle Rechnerkopplung zu ibaLogic-V4 (iba-FOB-xx-D und ibaFOB-io-ExpressCard)
- C Rechnerkopplung zu Systemen mit embedded iba-FPGA, z.B. ABB AC800 PEC
- Schnelle Anbindung an I/O-Peripherie, z. B. ibaPADU-S-IT mit ibaLogic
- □ Anbindung an SINAMICS LINK (ibaBM-SiLink)
- Anbindung an Kollektor und Distributor ibaBM-COL-8i-o und ibaBM-DIS-i-8o
- **オ** Siehe Beschreibung in Kap.7.2.5.

32Mbit Flex-Protokoll

Im 32Mbit Flex-Modus ist ibaLink-VME zu allen 32Mbit Flex-fähigen iba-Geräten kompatibel.

ibaLink-VME kann in einen Ring mit diesen Geräten aufgenommen werden, jedoch ist kein Datenaustausch zwischen den Geräten möglich, sondern nur mit dem Flex-Master (zurzeit nur ibaPDA).

オ Siehe Beschreibung in Kap. 7.2.6.

3 Lieferumfang

Überprüfen Sie nach dem Auspacken die Vollständigkeit und Unversehrtheit der Lieferung.

Im Lieferumfang sind enthalten:

□ ibaLink-VME (Karte)

4 Sicherheitshinweise

4.1 Bestimmungsgemäßer Gebrauch

Das Gerät ist ein elektrisches Betriebsmittel. Dieses darf nur für folgende Anwendungen verwendet werden:

- Messdatenerfassung und Messdatenanalyse
- □ Automatisierung von Industrieanlagen
- □ Anwendungen von Software-Produkten (ibaPDA, ibaLogic u. a.) und Hardware-Produkten der iba AG.

Das Gerät darf nur wie im Kapitel "Technische Daten" angegeben ist, eingesetzt werden.

4.2 Spezielle Sicherheitshinweise

Die EGB-Richtlinien für die Behandlung elektrostatisch gefährdeter Baugruppen und Bauelemente sind zu beachten.

Verwenden Sie ein Erdungskabel oder leiten Sie alle eventuell akkumulierte elektrostatische Aufladung ab, bevor Sie die Karte in die Hand nehmen.

Vermeiden Sie das Berühren der Kontakte.

Warnung!

Dies ist eine Einrichtung der Klasse A. Diese Einrichtung kann im Wohnbereich Funkstörungen verursachen. In diesem Fall kann vom Betreiber verlangt werden, angemessene Maßnahmen durchzuführen.

5 Systemvoraussetzungen

5.1 Hardware

Bei Kopplung zu PC-System:

- D PC, Pentium IV 1 GHz, mind. 512 MB RAM, 20 GB HD
- □ Eine LWL-Eingangskarte vom Typ ibaFOB-D
 - ibaFOB-io-D
 - ibaFOB-2io-D
 - ibaFOB-2i-D optional mit Erweiterungsmodul ibaFOB-4o-D
 - ibaFOB-4i-D optional mit Erweiterungsmodul ibaFOB-4o-D
 - ibaFOB-io-ExpressCard

Bei Kopplung zu Automatisierungssystemen:

- iba-Systemanschaltung als Partner der Rechnerkopplung oder
- □ iba I/O-Peripheriegerät

5.2 Software

Bei Kopplung zu PC-System:

- ibaPDA (Modus 32Mbit Flex wird unterstützt ab Version 6.29.0) oder
- □ ibaLogic-V4

5.3 SPS und Regelsysteme

- □ VME32- oder VME64-Systemrahmen (mit einem freien 6 HE Slot)
- □ ibaLink-VME-Baugruppe, als Sender-/Empfängerbaugruppe in SPS gesteckt.

Montieren und Demontieren der Baugruppe

Vorsicht!

Die EGB-Richtlinien für die Behandlung elektrostatisch gefährdeter Baugruppen und Bauelemente sind zu beachten.

Verwenden Sie ein Erdungskabel oder leiten Sie alle eventuell akkumulierte elektrostatische Aufladung ab, bevor Sie die Karte in die Hand nehmen. Vermeiden Sie das Berühren der Kontakte. Fassen Sie die Karte möglichst nur an der Frontblende an.

Die Baugruppe belegt einen Steckplatz innerhalb des VME-Systemrahmens.

Einsetzen der Karte

Vorsicht!

Schalten Sie zur Montage / Demontage der Karte das VME-System aus bzw. den Rahmen spannungsfrei.

Karte nicht unter Spannung stecken oder ziehen!

- 1. Nehmen Sie die Karte vorsichtig aus dem Versandbeutel. Verwenden Sie ein Erdungskabel oder leiten Sie alle eventuell akkumulierte elektrostatische Aufladung ab, bevor Sie die Karte in die Hand nehmen.
- **2.** Legen Sie die Karte mit der Lötseite auf eine ebene, saubere und trockene Unterlage und nehmen Sie die erforderlichen Einstellungen an den DIP-Schaltern vor.
- 3. Schalten Sie das VME-System ab (spannungsfrei).
- **4.** Nehmen Sie die Karte an den frontseitigen Rastelementen in die Hand. Klappen Sie die Rastelemente voneinander weg.
- 5. Schieben Sie die Karte vorsichtig in den gewünschten Slot des VME-Systems.
- 6. Bevor Sie die Karte ganz einschieben, vergewissern Sie sich, dass die beiden Führungsbolzen oben und unten auf der Rückseite der Frontplatte in die dafür vorgesehenen Bohrungen gleiten.
- 7. Klappen Sie die Rastelemente nach vorne (zueinander) bis sie einrasten.
- **8.** Führen Sie die Karte kräftig und gleichmäßig bis zum Anschlag hinein, indem Sie mit beiden Daumen gegen die Frontplatte drücken.
- **9.** Fixieren Sie die Karte im Rahmen mit Hilfe der beiden Sicherungsschrauben oben und unten in der Frontplatte.

Wichtiger Hinweis

Beim Einbau der Karte in VME-Rahmen des Systems GE 90/70 ist zu beachten, dass es dort keine Öffnungen für die Führungsbolzen der Karte gibt. Sollte dies bei der Bestellung nicht berücksichtigt worden sein, dann müssen die Führungsbolzen nachträglich entfernt werden, bevor die Karte eingebaut werden kann.

6.2 Entfernen der Karte

Zum Entfernen der Karte gehen Sie wie folgt vor:

- 1. Schalten Sie die Spannungsversorgung des VME-Rahmens ab.
- 2. Lösen Sie die beiden Sicherungsschrauben oben und unten in der Frontplatte.
- **3.** Drücken Sie die beiden Rastelemente mit den Daumen auseinander. Dadurch wird die Karte aus ihrem festen Sitz gelöst.
- 4. Ziehen Sie nun die Karte an den Rastelementen aus dem Slot.

7 Gerätebeschreibung

7.1 Anschlüsse und Bedienelemente der Frontplatte

- (1) Status-LEDs L1...L4
- (2) Drehschalter S1 Mode
- (3) Channel 1 Status-LEDs L30...L33
- (4) Channel 1 LWL-Empfänger X11 RX
- (5) Channel 1 LWL-Sender X10 TX
- (6) Drehschalter S2 Range
- (7) Drehschalter S3 Address
- (8) Channel 2 LWL-Sender X20 TX

Abbildung 1: Ansicht Frontplatte ibaLink-VME

7.1.1 Anschlüsse Lichtwellenleiter

Channel 1: X11 RX (4) und X10 TX (5)

Die beiden LWL-Buchsen (ST) dienen zum Anschluss der beiden Lichtwellenleiter für Channel 1. RX realisiert die Empfangsrichtung, TX die Senderichtung.

Mögliche Datenübertragungen siehe Kap. 7.2.

Channel 2: X20 TX (8)

Die LWL Buchse X20 TX stellt den Anschluss für den zweiten optischen Sendekanal her (Channel 2).

Im 3Mbit-Modus kann X20 als zweiter Ausgang verwendet werden. In anderen Betriebsarten ist der Ausgang X20 eine Kopie des Ausgangs X10 (Channel 1) und kann zur Diagnose genutzt werden.

Maximale Reichweite von LWL-Verbindungen

Die maximale Reichweite von LWL-Verbindungen zwischen 2 Teilnehmern ist abhängig von unterschiedlichen Einflussfaktoren. Dazu gehören z. B. die Spezifikation der LWL-Faser (z. B. 62,5/125 μ m, 50/125 μ m o.a.), oder auch die Dämpfung von weiteren Bauelementen in der LWL-Leitung wie Kupplungen oder Patchfelder.

Anhand der Sendeleistung der Sendeschnittstelle (TX) bzw. der Empfangsempfindlichkeit der Empfangsschnittstelle (RX) kann die maximale Reichweite jedoch abgeschätzt werden. Eine Beispielrechnung finden Sie in Kapitel 11.3.

Die Spezifikation der Sendeleistung und der Empfangsempfindlichkeit der im Gerät verbauten LWL-Bauteile finden Sie im Kapitel "Technische Daten" 11.1 unter "ibaNet-Schnittstelle".

7.1.2 Drehschalter

S1 "Mode" (2)

Mit Hilfe dieses Schalters wird die Betriebsart der ibaLink-VME-Karte eingestellt. Die Betriebsarten unterscheiden sich im verwendeten LWL-Protokoll, in der Übertragungsrate, in Größe und Format der Telegramme.

オ Siehe Kap. 7.2 "Betriebsarten".

S2 "Range" (6)

Im 3Mbit-Kaskadier-Modus wird mit diesem Schalter der gewünschte Umfang (Bereich) der von dieser Baugruppe zu übertragenden Werte innerhalb der Kaskade angegeben.

↗ Siehe dazu auch Abschnitt 7.2.1 und 9.3 "Kaskadenbetrieb 3Mbit"

Im 32Mbit-P2P-Modus können Sie hier den LWL-Telegrammtyp einstellen.

Im 32Mbit Flex-Modus ist der "Range"-Schalter ohne Funktion.

S3 "Address" (7)

Im 3Mbit-Modus legt dieser Schalter fest, ab welcher Adresse innerhalb der Kaskade die Baugruppe ihre Daten platziert bzw. sendet. Gültige Werte: 1...8. Ohne Kaskadenbetrieb sollte der Schalter auf 1 stehen.

➔ Siehe dazu auch Abschnitt 7.2.1 und 9.3 "Kaskadenbetrieb 3Mbit"

Im 32Mbit Flex-Modus wird hier die Adresse der Karte eingestellt, wenn mehrere Karten oder andere 32Mbit Flex-fähige Geräte in einer Ringtopologie verbunden sind. Gültige Werte: 1...F.

オ Siehe dazu auch Abschnitt 7.2.6 und 9.4 "Kaskadenbetrieb 32Mbit Flex"

Werkseinstellungen der Drehschalter

- S1 Modus: F (32Mbit Flex-Modus)
- S2 Range: 0
- S3 Address: 1

7.1.3 Status-LEDs

Betriebszustand (1)

LED	Status	Beschreibung
L1 RUN (grün)	blinkend aus	Spannung vorhanden und Gerät arbeitet (in Betrieb) keine Spannung oder Defekt
L2 VME (gelb)	_2 VMEanVMEbus Zugriff auf Karte (lesen oder schreiben)(gelb)auskein VMEbus Zugriff	
L3 USER (weiß)		kann von der VME-Host-Software über ein Register gesteuert werden
L4 ERR (rot)	an blinkend aus	interner Fehler in der Baugruppe Konfigurationsfehler Normalzustand; wurde ein Fehler behoben, wird die LED automatisch zurückgesetzt

Tabelle 1 Status-LEDs Betriebszustand

Kanalstatus (3)

LED Status		Beschreibung
L30 P2P	an	P2P (Peer-to-Peer)-Modus ist aktiviert
(grün)	aus	P2P-Modus ist nicht aktiviert
L31 LINK (gelb)	an blinkend	3Mbit-Modus, Signalempfang an RX 3Mbit-Signalempfang an RX, aber die Karte ist nicht für diesen Modus konfiguriert, oder 32Mbit Flex-Modus, TCP/IP-Telegrammempfang
	aus	Kein 3Mbit- Signal erkannt
L32 FLEX (weiß)	an blinkend	32Mbit-Signal erkannt (32Mbit Flex oder P2P) 32Mbit-Signal erkannt, aber die Karte ist nicht für diesen Modus
		konfiguriert
	aus	kein 32Mbit-Signal erkannt
L33 ID (grün)		kann im 32Mbit Flex-Modus vom I/O-Manager in ibaPDA gesteuert werden (dies kann hilfreich sein, eine ibaLink-VME-Karte im Rack zu identifizieren)

Tabelle 2 Status-LEDs Kanal

Für Channel 2 sind keine LEDs vorhanden, da dieser nur Ausgabekanal im 3Mbit-Modus oder eine Kopie von Channel 1 ist.

7.2 Betriebsarten

Die Betriebsart wird über den Drehschalter S1 "Mode" eingestellt. Damit werden das verwendete ibaNet-Protokoll, die Telegrammgröße und die dazugehörige Zeitbasis fest-gelegt.

Je nach Betriebsart können mehrere Geräte kaskadiert werden oder es sind zwei Geräte im Peer-to-Peer-Betrieb (P2P) gekoppelt. Der Ausgang X20 TX an Channel 2 kann als unabhängiger Datenkanal genutzt werden, oder zur Diagnose, wenn Daten von Channel 1 auf diesen Ausgang gespiegelt werden.

Schalter S1 Mode	ibaNet- Protokoll	Größe	Zeit- basis	X10 TX	X20 TX	Schalter S3 Addr	Schalter S2 Range
0	3Mbit	64A+64D	1 ms	RX+VME1	VME2	18	18
1	3Mbit	64A+64D	1 ms	RX+VME1	=TX1	18	18
8	3Mbit P2P	64A+64D	1 ms	VME1	VME2	-	-
9	3Mbit P2P	64A+64D	1 ms	VME1	=TX1	-	-
4	32Mbit P2P	4024 Bytes	50 µs 1.4 ms	VME1	=TX1	-	015
5	32Mbit P2P on X10 TX	4024 Bytes	50 µs 1,4 ms	RX+VME1	=TX1		015
	3Mbit on RX	64A + 64D	1 ms				
F	32Mbit Flex	65 Bytes 4060 Bytes	25 µs 1.4 ms	RX+VME1	=TX1	115	-

grün: kompatibel mit ibaLink-SM-128V-i-20

gelb: Lieferzustand

VME1: Daten von der VME-Bus Schnittstelle für Channel 1

VME2: Daten von der VME-Bus Schnittstelle für Channel 2

RX: LWL-Empfangsdaten von Channel 1 (Kaskadierung)

=TX1: Kopie von X10 TX (als Diagnoseausgang)

7.2.1 ibaNet 3Mbit (Mode 0)

An Channel 1 werden 64 analoge und 64 digitale Ein/Ausgangssignale mit einer Zeitbasis von 1 ms empfangen und gesendet. Mit dieser Betriebsart ist eine Kaskadierung von bis zu 8 Geräten möglich. Mit dem Drehschalter S2 "Range" wird der gewünschte Umfang (Bereich) der von dieser Baugruppe zu übertragenden Werte innerhalb der Kaskade angegeben. Gültig sind die Stellungen 1...8 (jeweils gültig für 8 digitale und analoge Messwerte). Bis zu 8 x (8 analoge + 8 digitale) Signale können in einer Kaskade übertragen werden. Ohne Kaskadenbetrieb sollte der Schalter auf 8 stehen.

Mit dem Drehschalter S3 "Address" wird festgelegt, ab welcher Adresse innerhalb der Kaskade die Baugruppe ihre Daten sendet (siehe Kap. 7.1.2 "Drehschalter" und Kap. 9.3 "Kaskadenbetrieb 3Mbit").

Hinweis

Überlappen sich die Datenbereiche mehrerer kaskadierter Geräte, so überschreibt die in der Kaskade nachfolgende Karte die Werte des Vorgängers, jedoch stehen alle Werte des Vorgängers in dem DPR^{*)} des Nachfolgers zur Verfügung.

*) Dual Port RAM

		S2 Range							
		1	2	3	4	5	6	7	8
	1	٢	3	3	3	3	3	3	0
	2	©	3	3	3	3	3	3	\odot
	3	3	3	3	3	3	3	\odot	8
lress	4	(3	3	3	3	3	\odot	3
3 Adc	5	<u>(</u>	0	0	0	8	<u>()</u>	8	8
Ś	6	<u>(</u>	0	0	8	8	3	8	8
	7	(\odot	8	8	8	3	8	8
	8	٢	8	8	8	8	8	8	8

Tabelle 3 Sinnvolle (B) und nicht sinnvolle (B) Kombinationen von S2- und S3-Schalterstellungen

An Channel 2 ist ein zweiter unabhängiger Ausgang für 64 analoge und 64 digitale Signale verfügbar.

7.2.2 ibaNet 3Mbit mit Diagnose (Mode 1)

Funktionen an Channel 1 wie im vorherigen Beispiel (Mode 0).

An Channel 2 werden die Daten von Channel 1 gespiegelt und stehen zur Diagnose zur Verfügung.

7.2.3 ibaNet 3Mbit P2P (Mode 8)

Im Peer-to-Peer-(P2)-Betrieb können zwei Karten miteinander gekoppelt werden mit einem Datenaustausch von 64 analogen und 64 digitalen Werten im 1 ms-Zyklus (Rechnerkopplung). In dieser Betriebsart werden die beiden VME-Speicherbereiche zyklisch von einer Karte zur anderen übertragen. Die Drehschalter S2 "Range" und S3 "Address" werden ignoriert, das Verhalten entspricht Range = 8 und Address = 1. Ein Kaskadenbetrieb ist hier nicht möglich.

Als Partner kann auch eine ibaLink-SM-128V-i-20, ibaLink-SM-64-io oder ibaLink-SM-64-SD16 oder ein Profibusmodul ibaBM-DPM-S-64 dienen. Damit sind auch schnelle Rechnerkopplungen zwischen unterschiedlichen Systemen möglich.

7.2.4 ibaNet 3Mbit P2P mit Diagnose (Mode 9)

Peer-to-Peer-Betrieb wie im vorhergehenden Beispiel (Mode 8).

An Channel 2 werden die Sendedaten von Channel 1 gespiegelt und stehen zur Diagnose zur Verfügung (z.B. für Datenaufzeichnung mit ibaPDA).

18

7.2.5 ibaNet 32Mbit P2P (Mode 4)

Im "schnellen" Peer-to-Peer-Betrieb werden ebenfalls zwei Systeme miteinander gekoppelt, jedoch können mehr Signale mit einer höheren Datenrate übertragen werden.

An Channel 2 werden die Sendedaten von Channel 1 gespiegelt und stehen zur Diagnose zur Verfügung (z.B. für Datenaufzeichnung mit ibaPDA).

Schalter S2 Range	Übertragungsart
0	64 Integer + 64 Digital in 50 μsec
1	128 Integer + 128 Digital in 100 μsec
2	256 Integer + 256 Digital in 200 μsec
3	512 Integer + 512 Digital in 400 μsec
4	1024 Integer + 1024 Digital in 800 μsec
5	Reserviert
6	32 Real + 32 Digital in 50 μsec
7	64 Real + 64 Digital in 100 μsec
8	128 Real + 128 Digital in 200 μsec
9	256 Real + 256 Digital in 400 μsec
А	512 Real + 512 Digital in 1000 μsec
В	Reserviert
С	2872 Bytes in 1 ms (20 Container)
D	4024 Bytes in 1.4 ms (28 Container)
E	Reserviert
F	Reserviert

Mit dem Drehschalter S2 "Range" wird die Übertragungsart wie folgt eingestellt:

Hinweis

Die DIP-Schalter für die Einstellung des Telegrammformats (REAL/INTEGER) werden nicht berücksichtigt, da das Format durch den Schalter S2 festgelegt wird.

7.2.6 ibaNet gemischter Modus - 32Mbit P2P senden und 3Mbit empfangen (Mode 5)

In diesem Modus wird der 32Mbit Peer-to-Peer-Modus dazu genutzt Daten wie in Modus 4 an ibaPDA zu senden, wobei aber der Empfänger von Kanal 1 64 analoge und 64 digitale Eingangssignale im 3Mbit-Modus empfängt.

Kanal 2: Die Ausgangsdaten von Kanal1 werden auf Kanal 2 gespiegelt und können zu Diagnosezwecken genutzt werden (z. B. zusätzliche Datenaufzeichnung mit einem anderen ibaPDA-System).

Beispiel 1

ibaLink-VME

Daten senden an ibaPDA im 32Mbit P2P-Modus (z. B. installiert in einem HPCi-System bei Nutzung der Request-Funktion) und Daten empfangen von ibaPDA im 3Mbit-Modus zur Nutzung von FOB Alarm Ausgangsmodulen.

Beispiel 2

In diesem Beispiel wird ibaLink-VME auch dazu verwendet Daten im 32Mbit P2P-Modus an ibaPDA zu senden.

Der Kanal 1 empfängt im 3Mbit-Modus 64 analoge und 64 digitale Eingangssignale mit einer Abtastzeit von 1 ms. Dieser Modus erlaubt die kaskadierte Verbindung von bis zu 8 Geräten.

Damit ist es Automatisierungssystemen mit einer ibaLink-VME.Karte möglich, alle iba-Eingangsgeräte zu nutzen, die den 3Mbit-Modus unterstützen, z. B. ibaPADU-8-Geräte oder Komponenten der ibaNet750-BM-Serie (WAGO/Beckhoff). Mit dem Drehschalter S2 "Range" wird die Übertragungsart wie folgt eingestellt:

Schalter S2 Range	Übertragungsart
0	64 Integer + 64 Digital in 50 μsec
1	128 Integer + 128 Digital in 100 μsec
2	256 Integer + 256 Digital in 200 μsec
3	512 Integer + 512 Digital in 400 μsec
4	1024 Integer + 1024 Digital in 800 µsec
5	Reserviert
6	32 Real + 32 Digital in 50 μsec
7	64 Real + 64 Digital in 100 μsec
8	128 Real + 128 Digital in 200 μsec
9	256 Real + 256 Digital in 400 μsec
A	512 Real + 512 Digital in 1000 μsec
В	Reserviert
С	2872 Bytes in 1 ms
D	4024 Bytes in 1,4 ms
E	Reserviert
F	Reserviert

Für den Empfänger auf Kanal 1 definieren die DIP-Schalter DP1 Bit 3 und Bit 4 die Byte-Order (endianness) und den Modus Integer/Real für die Empfangsdaten. Für weitere Informationen siehe 7.3.1.

Der Adressschalter S3 hat keine Funktion in diesem Modus.

7.2.7 32Mbit Flex (Mode 15)

ibaLink-VME

ibaLink-VME ibaLink-VME

Im 32Mbit Flex-Modus ist die Übertragungsrate flexibel je nach Datenmenge einstellbar. (z. B. schnellste Übertragungsrate: 65 Bytes in 25 μ s, die größte Datenmenge beträgt 4060 Bytes in 1,4 ms).

Die ibaLink-VME-Karte kann mit anderen 32Mbit Flex-fähigen Geräten in einer Ringtopologie kaskadiert werden. Bis zu 15 Geräte sind möglich. Dabei können die Geräte nur mit einer ibaFOB-D-Karte kommunizieren. Der Diagnose-Ausgang X20 wird im 32Mbit Flex-Modus derzeit noch nicht unterstützt.

Die Konfiguration wird auf der Karte gespeichert und bleibt erhalten bis vom Rechner eine neue Konfiguration gesendet wird.

Die Adresse der Karte in der Kaskade wird mit dem Drehschalter S3 Address eingestellt. Der Drehschalter S2 Range hat hier keine Funktion.

Gerätenummer in der Kaskade	Stellung Drehschalter S3 Address
nicht zulässig	0
1. Gerät	1
2. Gerät	2
:	:
14. Gerät	E
15. Gerät	F

7.3 DIP-Schalter auf der Karte

Im unteren Bereich auf der Bestückungsseite der Karte befinden sich DIP-Schalter, mit denen Interrupts, Datenformate und Speicheradressen eingestellt werden können.

Abbildung 2: Ansicht Bestückungsseite

Werkseinstellung der DIP-Schalter:

- Blockkonsistenz: Nein
- Formatmodus: Integer, Little Endian
- Adressierung: A32
- VME-Busadresse: 0x0000 0000

7.3.1 Bedeutung der DIP-Schalter

Bit	ON		OFF
	DP1 – Datenformat		
8	ohne Funktion	RSVD1	ohne Funktion
7	ohne Funktion	RSVD2	ohne Funktion
6	ohne Funktion	RSVD3	ohne Funktion
5	Konsistenzmodus EIN	CONSISTENT	Konsistenzmodus AUS
4	Channel 1 Big Endian	CH1-BIG-ENDIAN	Channel 1 Little Endian
3	Channel 1 REAL-Daten	CH1 REAL	Channel 1 INTEGER-Daten
2	Channel 2 Big Endian	CH2-BIG-ENDIAN	Channel 2 Little Endian
1	Channel 2 REAL-Daten	CH2 REAL	Channel 2 INTEGER-Daten
	DP2 – Basisadresse A[39:32] (nur	im A40- und A64-Modus	5)
8	Adressbit = 1	A39 (A63)	Adressbit = 0
7	Adressbit = 1	A38 (A62)	Adressbit = 0
6	Adressbit = 1	A37 (A61)	Adressbit = 0
5	Adressbit = 1	A36 (A60)	Adressbit = 0
4	Adressbit = 1	A35 (A59)	Adressbit = 0
3	Adressbit = 1	A34 (A58)	Adressbit = 0
2	Adressbit = 1	A33 (A57)	Adressbit = 0
1	Adressbit = 1	A32 (A56)	Adressbit = 0
	DP3 – Adressmodus und Basisa	adresse	
8	24-Bit-(oder 64-Bit)-Modus aktiviert	Mode A24	32-Bit-Modus aktiviert
7	40-Bit-(oder 64-Bit)-Modus aktiviert	Mode A40	32-Bit-Modus aktiviert
6	Adressbit = 1	A31 (A55)	Adressbit = 0
5	Adressbit = 1	A30 (A54)	Adressbit = 0
4	Adressbit = 1	A29 (A53)	Adressbit = 0
3	Adressbit = 1	A28 (A52)	Adressbit = 0
2	Adressbit = 1	A27 (A51)	Adressbit = 0
1	Adressbit = 1	A26 (A50)	Adressbit = 0
	DP4 –Basisadresse		
8	Adressbit = 1	A25 (A49)	Adressbit = 0
7	Adressbit = 1	A24 (A48)	Adressbit = 0
6	Adressbit = 1	A23 (A47)	Adressbit = 0
5	Adressbit = 1	A22 (A46)	Adressbit = 0
4	Adressbit = 1	A21 (A45)	Adressbit = 0
3	Adressbit = 1	A20 (A44)	Adressbit = 0
2	Adressbit = 1	A19 (A43)	Adressbit = 0
1	Adressbit = 1	A18 (A42)	Adressbit = 0

Werkseinstellungen sind gelb markiert.

Tabelle 4 Bedeutung der DIP-Schalter

□ Konsistenzmodus (DP1.5):

Hier wird der Konsistenzmodus freigeschaltet.

Konsistenzmodus heißt, dass in einem LWL-Telegramm die Daten aus einem Verarbeitungszyklus übertragen werden. Für eine (Block-)konsistente Datenübertragung muss der Anwender folgendermaßen vorgehen:

- Der Sender muss nach dem Beschreiben des Sendepuffers den Datentransfer durch Setzen des Bits 0xE8.7 im DPR freigeben. Das Kopieren des Sendepuffers dauert weniger als 10 µs, d.h. die Sendeaufträge dürfen nicht schneller als 10 µs aufeinander folgen.
- Im Konsistenzmodus erfolgt ein Update des Empfangspuffers im DPR nur auf Anfrage des Empfängers durch Setzen des Bits 0xE8.5 im DPR.
- オ Siehe Abschnitt 10.3 "Steuerung-, Status-, Versionsregister"

Auch wenn der Konsistenzmodus ausgeschaltet ist, ist die Konsistenz innerhalb eines 16-Bit- oder 32-Bit-Datenwortes gewährleistet.

Byte-Reihenfolge (DP1.4 und DP1.2):

Die Einstellung der Byte-Reihenfolge ist nur relevant für 3Mbit- (S1 = 0, 1, 8, 9) und bestimmte 32Mbit P2P-Betriebsarten (S1 = 4, S2 = 0...B). Im 32Mbit P2P-Modus mit S2 = C oder D und im 32Mbit Flex Modus (S1 = F) wird die Byte-Reihenfolge durch ibaPDA festgelegt.

In Modus S1 = 5 definiert DP1.4 die Byte-Order der 3Mbit-Empfangsdaten.

Datenformat (DP1.3 und DP1.1)

Die Einstellung des Datenformats ist nur relevant für die 3Mbit-Betriebsarten (S1 = 0, 1, 8, 9).

Bei 32Mbit P2P (S1 = 4) wird das Datenformat durch den Telegrammtyp (Schalter S2) festgelegt.

Im 32Mbit Flex-Modus (S1 = F) werden die Datentypen durch ibaPDA festgelegt.

In Modus S1 = 5 definiert DP1.3 den Modus Integer oder Real der Empfangsdaten

Adress-Modus (DP3.8 und DP3.7):

Adress-Modus	DP3.8	DP3.7	verwendete		
	(A24-Modus)	(A40-Modus)	Adressschalter		
A32-Modus	OFF	OFF	A31A18		
A24-Modus ON		OFF	A23A18		
A40-Modus OFF		ON	A39A18		
A64-Modus ON		ON	A39A18 (definieren die		
			Adressbits A63A42)		

iba

iba

7.3.2 VME-Startadresse einstellen

Mit den unteren beiden DIP-Schaltern wird die Kartenadresse im VME-Bereich als HEXcodierter Wert eingestellt.

Den Zusammenhang zwischen Schalterbit und Adresse zeigt die folgende Grafik am Beispiel der Startadresse 0x77900000

Die unteren vier Hex-Stellen der Adresse sind mit 0 vorbelegt, so dass es dafür keine Schalter gibt. Auch die Bits A16 und A17 sind mit Null vorbelegt.

Einstellungen sind somit erst ab dem 19. Adressbit (A18) möglich. Die fünfte Hex-Stelle der Adresse kann also nur die Werte 0, 4, 8 und C haben.

Werkseinstellung: 0x0000 0000

8 Einstellung der Host-Systeme

i

Hinweis

Die nachfolgenden Beispiele basieren auf Anwendungen, die mit der Vorgängerbaugruppe ibaLink-SM128 realisiert wurden, d.h. sie gelten für die ibaLink-VME mit 3Mbit-Modus.

ibaLink-VME bietet aber die Möglichkeit, größere Datenmengen, schnellere Zyklen oder konsistente Datenblöcke zu übertragen. Stellen Sie dafür den 32Mbit P2P- oder 32Mbit Flex-Modus ein. Es ist dann aber notwendig für das Übertragen der Werte in den VME-Bereich andere Funktionen zu verwenden.

8.1 Einstellungen für ALSPA CP80/A800 (AEG Logidyn D)

ALSPA CP80/A800 ist der angepasste Name für das frühere Hochleistungssteuersystem CP80/A800 mit Logidyn D der Firma AEG. Es handelt sich um ein VME-basiertes System für schnelle Steuerungs- und Regelungsaufgaben von GE Energy Power Conversion GmbH, ehem. CONVERTEAM GmbH, bzw. ALSTOM Power Conversion, AEG-Cegelec oder AEG.

Für den Betrieb der Karte ibaLink-VME in diesem System muss eine modifizierte Ausführung mit einem 16 Bit-VME-Anschluss verwendet werden, da im unteren Bereich des Magazins der PMB-Bus verläuft.

Projektierungshinweise für ibaLink-VME mit ALSPA CP80/A800 (Logidyn D)

Im Beispiel auf der nächsten Seite ist die Karte so eingestellt, dass sie im 24 Bit-Adressmodus arbeitet und Integer-Werte für Analogsignale liefert.

Eine mögliche Adressbelegung könnte wie folgt aussehen:

Adressen Analog (Integer) Channel 1:	.0xE43802
Adressen Analog (Integer) Channel 2:	.0xE43902
Adressen Digital Channel 1:	.0xE42420
Adressen Digital Channel 2:	.0xE42428
Adresse Lebenszeichen-Counter:	.0xE40080

Die entsprechende Belegung des Speicherbereiches kann im LogiCAD-Programm mit Hilfe von Unterprogrammen (UP) erfolgen. Diese Unterprogramme sind erforderlich, um die zu messenden Signale auf den Speicherbereich der Karte umzuladen.

Eine Request-Lösung für die Auswahl der zu messenden Signale in ibaPDA steht nicht zur Verfügung. D. h. die zu messenden Signale müssen in der Logik "verdrahtet" werden.

Die Verwendung mehrerer Karten in einem Magazin ist möglich.

Тірр

Für die in diesem Beispiel benutzten Adressen sind auf Anfrage ein entsprechend kompiliertes Programm (.O32-Objektdatei) sowie ein LogiCAD-Beispiel (Doku) von iba erhältlich. Die Objektdatei muss nur mit dem Logidyn-Programm verlinkt, bzw. in die *.ind-Datei eingetragen werden (Logitool oder DOS-Ebene).

Mit dem Unterprogramm können bis zu 64 Integer- und 64 Binärwerte in Gruppen von je 16 Signalen im LogiCad-Programm rangiert werden. Sie werden über den 1. Kanal der Karte an ibaPDA ausgegeben.

Wenn die o.g. Adressen in der existierenden Anlage bereits anderweitig verwendet werden, dann muss das Unterprogramm neu kompiliert werden, was allerdings eine DSI-Karte erfordert.

8.1.1 Karteneinstellungen

no function no function no function no function no function no function Einstellungen: Consistent mode Non-Consistent (dword only) Channel 1 Big Endian Channel 1 Little Endian Modus: A24 (24-Bit-Modus) Channel 1 Real Channel 1 Integer Channel 2 Big Endian Channel 2 Little Endiar Startadresse Speicherbereich: Channel 2 Real Channel 2 Integer 0xE40000 10 A39 on A39 off A38 on A38 off Byte-Reihenfolge: Big Endian A37 on A37 off A36 on A36 off Datenformat: Integer A35 on A35 off A34 on A34 off A33 on A33 off A32 on A32 off Mode A24 Mode A32 Mode A40 Mode A32 A31 on A31 off A30 on A30 off A29 on A29 off Startadresse A28 on A28 off A27 on A27 off 0xE40000 A26 on A26 off A25 on A25 off A24 on A24 off ۲ A23 on A23 off A22 on A22 off Ε A21 on A21 off A20 on A20 off A19 or A19 off A18 on A18 off 4

Die gelben Markierungen zeigen die Schalterstellung.

Abbildung 4: DIP-Schalter, Einstellung für ALSPA CP80/A800 (eine, bzw. erste ibaLink-VME-Karte)

8.1.2 Schalter-Einstellungen auf der Frontplatte der ibaLink-VME

Für 3Mbit Protokoll: Schalter S1 = 0, S2 = 8, S3 = 1 Für 32Mbit P2P: Schalter S1 = 4, S2 abhängig von Datenmenge, S3 = x Für 32Mbit Flex: S1 = F, S2 = x, S3 = 1...F (Geräteadresse)

8.2 Einstellungen für ALSPA C80 HPC (Logidyn D2)

Das System ALSPA C80 HPC ist ein VME-basiertes System für Steuerungs- und Regelungsaufgaben von GE Energy Power Conversion, Berlin. Die ibaLink-VME-Karte kann in einem HPC-Magazin mit Logidyn D2 betrieben werden.

Hinweis

Für das ältere System A800 / Logidyn D1 kann nur die modifizierte Ausführung der Karte (ibaLink-VME-16Bit) verwendet werden.

8.2.1 Projektierungshinweise für ibaLink-VME mit ALSPA C80 HPC (Logidyn D2)

GE Energy hat für den Betrieb von ibaLink-VME-Karten vier VMEbus-Adressen reserviert. Somit können bis zu vier ibaLink-VME-Karten in einem HPC-Magazin betrieben werden. Die Speicherbereiche sind jeweils für 512 kByte bemessen, obwohl zurzeit nur 256 kByte genutzt werden. Damit ist die Karte auch für künftige Erweiterungen gerüstet.

Parametrierung der VME-Bus-Adresse im HPC (LogiCAD)

A32-Basisadresse:0x77900000 A32-Size: 0x00040000 (256 kByte)

8.2.2 Karteneinstellungen

Die gelben Markierungen zeigen die Schalterstellungen.

Abbildung 5: DIP-Schalter, Einstellung für ALSPA C80 HPC (eine bzw. erste ibaLink-VME-Karte)

Abbildung 6: DIP-Schalter, Adresseinstellung für bis zu 4 ibaLink-VME-Karten in ALSPA C80 HPC

8.2.3 Einsatz der ibaLink-VME im SM128 Kompatibilitätsmodus

Übertragung der Messwerte in den VME-Bereich

Um Daten in den (die) Speicherbereich(e) der ibaLink-VME-Karte(n) schreiben zu können, muss ein Unterprogramm, der so genannte Parameterbaustein "IBA_SM128V", im Funktionsplan verwendet werden. Je eingesetzter Karte ist ein solcher Parameterbaustein zu verwenden. Als Eingangsparameter erhält er die Nummer des entsprechenden VME-Blocks, des VMEB1-Blocks und des Slots, in dem die Karte steckt. Eine Beispielapplikation ist bei GE Energy Berlin auf Anfrage erhältlich. Wenn ibaLink-VME im SM128-kompatiblen Modus verwendet wird, dann werden die "Analogwerte" (Float) in den VME-Block gelegt, die Binärwerte (Merker) in den VMEB1-Block.

Bei Verwendung der ibaLink-VME im 32Mbit Flex-Modus ist die Verwendung anderer, evtl. noch zu entwickelnder, Parameterbausteine notwendig.

Verwaltung im HPC (LogiCAD)

Für den Betrieb einer oder mehrerer ibaLink-VME-Karten sind ein Verwaltungsbaustein und eine Zeitführung zu projektieren.

Linkanweisung (LogiCAD)

Im Programm ist eine Linkanweisung zur Library SM128\IBA.lib zu projektieren.

Signalbelegung für Messkanäle (LogiCAD)

Die zu übertragenden Analog- und Digitalwerte sollten aus Gründen der Übersichtlichkeit gemäß der Modulstruktur von ibaPDA gekennzeichnet werden.

Hardwarekonfiguration im HPC

Die ibaLink-VME-Karte wird als OEM-Baugruppe in der HW-Konfiguration eingetragen. Einstellungen für Hardwarebaugruppen (WINRDTM):

OEM	
Slot:	12
Baugruppenname:	SM128V
Herstellername:	IBA
A32-Basisadresse:	0x77900000
A32-Größe	0x00040000
A24-Basisadresse:	0x00000000
A24-Größe:	0x00000000
A16-Basisadresse:	0x00000000
A16-Größe:	0x00000000
<u>O</u> K <u>A</u> bbrech	en <u>R</u> CSL

8.2.3.1 Einstellungen auf der Frontplatte der ibaLink-VME

Für 3Mbit Protokoll: Schalter S1 = 0, S2 = 8, S3 = 1

8.2.4 Einsatz der ibaLink-VME im 32Mbit P2P-Modus

Zusätzliche Projektierungshinweise für ibaLink-VME mit ALSPA C80 HPC (Logidyn D2)

Wird ibaLink-VME im 32Mbit P2P-Modus verwendet, können 974 Float-Werte und 1024 Bits mit einer Karte übertragen werden. Die Stellung des Drehschalters S1 muss D sein, es werden 4024 Bytes in 1,4 ms übertragen.

i

Hinweis

Voraussetzung für die Verwendung der ibaLink-VME im P2P-Modus ist die Firmware-Version v02.02.001 oder höher. Zudem wird empfohlen, ibaPDA V6.38.0 oder höher zu installieren, damit die Default-Einstellungen des ibaLink-VME P2P-Moduls im D-Modus korrekt voreingestellt sind.

Übertragung der Messwerte in den VME-Bereich

Um Daten in den Speicherbereich der ibaLink-VME-Karte schreiben zu können, muss ein Unterprogramm, der so genannte Parameterbaustein "VMIC_IBA", im Funktionsplan verwendet werden. Der Parameterbaustein wurde ursprünglich zum Schreiben in Reflective Memory verwendet.

Der Parameterbaustein kann 32 Blöcke mit Analogwerten (Float) in den Karten-Offset 0x5000 schreiben, und 32 Blöcke mit Digitalwerten in den Karten-Offset 0x6000. Um den Baustein nutzen zu können, müssen Bereiche von der Firmware umgeladen werden:

- Der Analogbereich 0x5000-0x5F37 in den Offset 0xC000-0XCF37
- Der Digitalbereich 0x6000-0x607F in den Offset 0xCF38-0XCFBF.

0xC000 ist der Speicherort des 4K Sendepuffers für 32Mbit P2P- und 32Mbit Flex-Modus.

Ein Parameterbaustein muss für jede ibaLink-VME-Karte im Magazin programmiert werden. Eingabeparameter (input parameter) sind

- die Nummer des ersten VME-Blocks,
- der erste VMEB1-Block,
- Anzahl der Blöcke und
- die Nummer des Slots, in dem die Karte steckt.

Eine Beispielapplikation ist bei iba auf Anfrage erhältlich. Allerdings ist iba nicht verantwortlich für die Anpassung des Beispiels an Ihr System.

Ein Datenübertragungsblock in LogiCAD besteht aus 2 VME-Blöcken (mit je 16 analogen Float-Werten) und 1 VMEB1 (mit je 32 Bit).

Um den gesamten Bereich von 4024 Bytes zu nutzen, müssen 64 VME-Blöcke (61 tatsächlich verwendet) und 32 VMEB1-Blöcke erzeugt werden. Auf Anfrage kann ein VB-Script zur Verfügung gestellt werden, das eine TXT-Datei mit den VME- und VMEB1-Blöcken erzeugt, die in LogiCAD importiert werden kann.

VME : VME-Data-Exc	change 4 byte	
Com. VME 1 for i	baPDA	
,		
EX	T Name	Commentary
1. X	PDA_F0001	
2. X	PDA_F0002	
з. 🛛	PDA_F0003	
4 - X	PDA_F0004	
5. X	PDA_F0005	
6. X	PDA_F0006	
7. X	PDA_F0007	
8. X	PDA_F0008	
9. X	PDA_F0009	
10. _X	PDA_F0010	
11. X	PDA_F0011	
12. X	PDA_F0012	
13. X	PDA_F0013	
14. X	PDA_F0014	
15. X	PDA_F0015	
16. X	PDA_F0016	
		2 1
	OK	Cancel

VMEB1: VME-Data-Exchange binary							
Com.	DM. VME 1 bits for ibaPDA						
	, 						
	EXT	Name			EXT	Name	
1.	x	PDA_80001		2.	x	PDA_B0002	
з.	x	PDA_B0003		4.	x	PDA_B0004	
5.	x	PDA_80005		6.	x	PDA_80006	
7.	x	PDA_B0007		8.	x	PDA_B0008	
9.	x	PDA_80009		10.	x	PDA_B0010	
11.	x	PDA_B0011		12.	x	PDA_B0012	
13.	x	PDA_B0013		14.	x	PDA_B0014	
15.	x	PDA_B0015		16.	x	PDA_80016	
17.	x	PDA_B0017		18.	x	PDA_B0018	
19.	x	PDA_B0019		20.	x	PDA_B0020	
21.	x	PDA_B0021		22.	x	PDA_B0022	
23.	x	PDA_B0023		24.	x	PDA_B0024	
25.	x	PDA_B0025		26.	x	PDA_B0026	
27.	x	PDA_B0027		28.	x	PDA_B0028	
29.	x	PDA_80029		30.	x	PDA_80030	
31.	x	PDA_B0031		32.	x	PDA_B0032	
			<u>0</u> K		Ca	ncel	

Verwaltung im HPC (LogiCAD)

Für den Betrieb einer oder mehrerer ibaLink-VME-Karten sind ein VMIC_IBA Block und eine Zeitführung zu projektieren.

Linkanweisung (LogiCAD)

Im Programm ist eine Linkanweisung zur Library LIB386\VMIC_IBA.LIB zu projektieren.

Signalbelegung für Messkanäle (LogiCAD)

Die zu übertragenden Analog- und Digitalwerte sollten aus Gründen der Übersichtlichkeit gemäß der Modulstruktur von ibaPDA gekennzeichnet werden.

Hardwarekonfiguration im HPC

Die ibaLink-VME-Karte wird als OEM-Baugruppe in der HW-Konfiguration eingetragen.

Einstellungen für die Hardware (WINRDTM):

OEM			
Slot	5		
Boardname:	IBALINK_		
Factoryname:	iba		
A32-Baseaddress:	0x77900000		
A32-Size:	0×00040000		
A24-Baseaddress:	0×00000000		
A24-Size:	0×00000000		
A16-Baseaddress:	0×00000000		
A16-Size:	0×00000000		
OK Cancel	RCSL		

iba

8.2.4.1 Einstellungen auf der Frontplatte der ibaLink-VME

32Mbit P2P: Schalter S1 = 4, S2 = D, S3 = x

8.2.4.2 Spezielle Einstellungen in ibaPDA

Das Anlegen eines P2P-Moduls in ibaPDA wird in Kapitel 9.1.2 beschrieben.

Wenn Sie ibaPDA V6.38.0 oder höher verwenden und der Schalter S2 (Range) auf D steht, wird beim Anfügen eines neuen Moduls die Anzahl der Analogsignale automatisch auf 974 und der Digitalsignale auf 1024 eingestellt. Die Offsets der 974 analogen und der 1024 digitalen Signale werden ebenfalls entsprechend voreingestellt. Sowohl Analog- als auch Digitalsignale müssen geswappt werden, wie im Screenshot unten abgebildet.

8.2.4.3 Beispiel für den Einsatz eines VMIC_IBA-Blocks in LogiCAD

8.3 Einstellungen für HPCi

Das System ALSPA C80 HPCi ist ein VME-basiertes System für Steuerungs- und Regelungsaufgaben von GE Energy. Es ist das Nachfolgesystem zum System ALSPA C80 HPC (LogidynD2). Die Standardausführung (32 Bit-VME) der ibaLink-VME-Karte kann im HPCi-Magazin unter dem Betriebssystem Vx-Works und mit dem Programmiersystem (ALSPA) P80 betrieben werden.

8.3.1 Projektierungshinweise

GE Energy hat für den Betrieb von ibaLink-VME-Karten vier VME-Speicherbereiche reserviert. Somit können bis zu vier Karten in einem Magazin betrieben werden. Die Speicherbereiche sind jeweils für 512 kByte bemessen, obwohl zurzeit nur 256 kByte genutzt werden. Somit ist auch an die Zukunft gedacht, wenn es einmal Karten mit mehr Kanälen geben sollte.

Parametrierung VME-Bus-Adresse im HPCi (P80i)

A32-Basisadresse:0x77900000 A32-Size: 0x00040000 (256 kByte)

8.3.2 Karteneinstellungen

Die gelben Markierungen zeigen die Schalterstellungen.

Abbildung 7: DIP-Schaltereinstellung für ALSPA C80 HPCi (eine bzw. erste ibaLink-VME-Karte)

Abbildung 8: DIP-Schaltereinstellung für bis zu 4 ibaLink-VME-Karten in ALSPA C80 HPCi

8.3.3 Einsatz der ibaLink-VME im SM128-Kompatibilitätsmodus

8.3.3.1 Übertragung der Messwerte in den VME-Bereich

Für das Schreiben der Daten in den VME-Bereich sind entsprechende VMEWRT-Bausteine im Funktionsplan vorzusehen.

Beispiel für das Schreiben von analogen und digitalen Signalen auf **Channel 1** der ersten Karte mit Startadresse 0x77900000:

Im SM128-Modus werden die SM128 RX/TX-Puffer verwendet.

➔ Weitere Informationen zu den unterschiedlichen Adress-Offsets, siehe Kapitel 10.4.

8.3.3.2 Einstellungen auf der Frontplatte der ibaLink-VME

Für 3Mbit-Protokoll: Schalter S1 = 0, S2 = 8, S3 = 1

iba

8.3.4 Einsatz der ibaLink-VME im 32Mbit P2P- oder 32Mbit Flex-Modus

8.3.4.1 Übertragung der Messwerte in den VME-Bereich

Für das Schreiben der Daten in den VME-Bereich sind entsprechende VMEWRT-Bausteine im Funktionsplan vorzusehen.

Beispiel für das Schreiben von analogen und digitalen Signalen auf die erste Karte mit Startadresse 0x77900000:

Im P2P- oder Flex-Modus werden die 4K RX/TX-Puffer verwendet.

7 Weitere Informationen zu den unterschiedlichen Adress-Offsets siehe Kapitel 10.5

8.3.4.2 Einstellungen auf der Frontplatte der ibaLink-VME

Für 32Mbit P2P: Schalter S1 = 4, S2 abhängig von Datenmenge, S3 = x

Für 32Mbit Flex: S1 = F, S2 = x, S3 = 1...F (Geräteadresse)

8.3.5 Einsatz der ibaLink-VME im gemischten Modus: 32Mbit P2P senden und 3Mbit empfangen

8.3.5.1 Übertragen der Messwerte in den VME-Bereich

Diese Prozedur gleicht der, die in Kapitel 8.3.4.1 beschrieben ist.

8.3.5.2 Lesen der empfangenen Daten aus dem VME-Bereich

In diesem Modus werden die SM128 RX-Puffer genutzt. Siehe Kapitel 10.4 für weitere Informationen über die verschiedenen zu verwendenden Adress-Offsets.

Um die Daten aus dem VME-Bereich lesen zu können, müssen die entsprechenden VMERD-Funktionsbausteine im Anwendungsprogramm enthalten sein.

Ein Beispiel zum Lesen von Analog- und Digitalsignalen auf der ersten Karte mit Basisadresse 0x77900000:

Für das Lesen der **Digitalsignale** werden 8 Bytes (2 DWORD) ab Offset 0x2400 gelesen. Anschließend werden die DWORDS mit dem Funktionsbaustein DW_TO_BA in 64 BOOL-Werte gewandelt.

Lesen der Analogsignale ab Offset 0x3000:

- Zunächst wird ein 4 Byte-VMERD auf Offset 0x1800 ausgeführt, um die DIP-Schalterstellung von DP1.3 für Integer- oder Real-Modus zu bestimmen (= Bit 7 bei 0x1801, wegen der eingestellten Byte-Order Big Endian, Bit 23 im DWORD bei 0x1800).
- Abhängig von dieser Einstellung werden ab Offset 0x3000 64 Integer-Werte oder 64 Real-Werte gelesen.
- Die Integer-Werte werden mit dem benutzerdefinierten Funktionsbaustein 64_SI_TO_DI von Short Integer nach DINT gewandelt.

8.3.5.3 Schalterstellungen auf ibaLink-VME

Für die Sendedaten:

• Schalter S1 = 5, S2 abhängig von Datenmenge, S3 = x

Für die Empfangsdaten:

- Schalter S1 = 5, S3 = x
- DP1.3 und DP1.4 müssen entsprechend für Kanal 1 eingestellt werden. Das Beispiel im folgenden Bild zeigt die Werkseinstellung (Real.Modus und Big Endian)

8.4 Einstellungen für GE 90/70

8.4.1 Karteneinstellungen

Die gelben Markierungen zeigen die Schalterstellungen.

Abbildung 9: DIP-Schalter, Einstellung für GE 90/70 (eine bzw. erste ibaLink-VME-Karte)

8.4.2 Einstellungen auf der Frontplatte der ibaLink-VME

Für 3Mbit Protokoll: Schalter S1 = 0, S2 = 8, S3 = 1 Für 32Mbit P2P: Schalter S1 = 4, S2 abhängig von Datenmenge, S3 = x Für 32Mbit Flex: S1 = F, S2 = x, S3 = 1...F (Geräteadresse)

8.5 Einstellungen für SIMATIC TDC

Im System SIMATIC TDC kann ab der Version 6.1 des Projektierungspakets D7-SYS die ibaLink-VME-Karte betrieben werden.

8.5.1 Projektierungshinweise für SIMATIC TDC

Im Masterprogramm (HW-Konfig) muss ein "Universalmodul SB590" projektiert werden.

Einstellungen in Eigenschaften, Register "Parameter":

- Datenzugriffe: Peripherie (I/O)
- Adressen: A32
- Länge im Adressraum: 1 MB
- Keine Automatische Steckplatzerkennung

Als einzige Änderung gegenüber den Default-Werten muss die automatische Steckplatzerkennung "Auto Slot-ID" ("Automatische Steckplatzerkennung") abgewählt werden.

Eigenschaften - SB590	×
Allgemein Adressen Parameter	
Adressbereich Datenzugriffe Peripherie (I/O)	
Speicher (MEM) Adressen Adressleitungen ① 32 (A32, max 16 MB) noch verfügbarer Adressbereich	
C 24 (A24, max 16 MB) Länge im Adressraum 1 MB C 16 (A16, max 64 kB) einzustellende Basisadresse 0xc7000000	
Interruptvektor (0255)	
OK Abbrechen Hilfe	

i

Wichtiger Hinweis

Bei Verwendung der ibaLink-VME im Siemens Automatisierungssystem SIMATIC TDC darf innerhalb eines Baugruppenträgers keine SIMATIC TDC-Baugruppe rechts von der ibaLink-VME-Karte gesteckt werden! Da auf Grund der dynamischen Adressraumzuordnung ein erforderliches Initialisierungssignal nicht über den Steckplatz, an dem eine ibaLink-VME-Karte gesteckt ist, weitergegeben wird, tritt ein Initialisierungsfehler bezüglich der sich nicht rückmeldenden Baugruppe auf. Dadurch wird der Anlauf des Baugruppenträgers verhindert.

Die ibaLink-VME-Karte belegt einen Bereich von 256 kByte, jedoch wird vom D7-Sys mind. 1 MByte reserviert. Die Adressen aller Karten sind aus der HW-Projektierung zu entnehmen.

Vorsicht!

Nach einer Änderung der Hardwarekonfiguration muss die Adresse nachgeprüft und evtl. neu eingestellt werden. Ein Zugriff auf eine nicht zulässige Adresse führt zu einem fatalen Fehler "H".

Übertragung der Messwerte in den VME-Bereich

Um Daten in den Speicherbereich der ibaLink-VME-Karte schreiben zu können, muss ein Funktionsblock im Funktionsplan verwendet werden. Je eingesetzter Karte sind ein oder mehrere Bausteine zu verwenden.

Beispiel eines Bausteins:

Wichtiger Hinweis

Die Bausteine können nicht von der iba AG zur Verfügung gestellt werden. Wenden Sie sich bitte an die örtliche Siemens Niederlassung oder an die Siemens AG in Erlangen.

8.5.2 Einstellungen auf der Karte

Die gelben Markierungen zeigen die Schalterstellungen.

Abbildung 10: DIP-Schalter, Einstellung für SIMATIC TDC (eine bzw. erste ibaLink-VME-Karte)

Einstellungen:

Modus: A32

Byte-Reihenfolge: Little Endian

Datenformat: REAL (entsprechend dem Format, das der Baustein und der Kommunikationspartner unterstützen)

Einstellung der Speicheradresse auf der Karte:

Beispiel Startadresse 0xC700 0000 (aus der HW-Konfig zu entnehmen)

Abbildung 11: DIP-Schaltereinstellung für zwei ibaLink-VME-Karten in SIMATIC TDC

8.5.3 Einstellungen auf der Frontplatte der ibaLink-VME

Für 3Mbit-Protokoll: Schalter S1 = 0, S2 = 8, S3 = 1

Für 32Mbit P2P: Schalter S1 = 4, S2 abhängig von Datenmenge, S3 = x

Für 32Mbit Flex: S1 = F, S2 = x, S3 = 1...F (Geräteadresse)

9 Systemtopologien

Die Baugruppe kann in mehreren Topologien betrieben werden. Die Einstellung der Betriebsart ergibt sich aus den Anwendungsbeispielen in Kap. 7.2 Betriebsarten.

9.1 ibaPDA-Applikation

Abhängig von dem auf der ibaLink-VME eingestellten LWL-Protokoll ist es notwendig, eine, zwei oder drei LWL-Kabel für die Verbindung zu verwenden.

Abbildung 12: ibaLink-VME mit ibaPDA

9.1.1 Konfiguration im 3Mbit-Modus

In der klassischen Kombination von ibaLink-VME und ibaPDA werden beide Kartenausgänge jeweils mit einem Eingang an der ibaFOB-Karte verbunden. Jeder Input-Link übernimmt 64 Analog- und 64 Digitalsignale, in Summe also jeweils 128.

Für Ausgaben von ibaPDA an ibaLink-VME brauchen Sie einen LWL-Ausgangs-Link und eine LWL-Verbindung zum RX-Port der ibaLink-VME. Fügen Sie im I/O-Manager ein Modul FOB-Alarm unter dem angeschlossenen Link an und definieren Sie die gewünschten analogen oder digitalen Ausgangsdaten.

Andere Dokumentation

Sehen Sie dazu das Handbuch "ibaLink-SM-128V-i-2o".

9.1.2 Konfiguration im 32Mbit P2P-Modus (4) und gemischten Modus (5)

9.1.2.1 Gemeinsame Einstellungen für beide Modi

Im 32Mbit P2P-Modus oder im gemischten Modus genügt ein Simplex-LWL-Kabel von TX1 oder TX2 an die ibaFOB-D-Karte. Im I/O-Manager von ibaPDA legen Sie ein "ibaLink-VME (P2P)"-Modul an dem angeschlossenen Link an. Definieren Sie den Verbindungsmodus im Feld "S2 Drehschalter", der der Schalterstellung von S2 "Range" entspricht. Oder Sie rufen einfach die automatische Erkennung des angeschlossenen Links auf.

Ausgaben von ibaPDA an ibaLink-VME werden im 32Mbit P2P-Modus nicht unterstützt, aber im gemischten Modus.

Abbildung 13: ibaLink-VME (P2P)-Modul

Erweiterter Modus

Wenn Sie die Option "Erweiterter Modus" aktivieren, können Sie noch weitere Einstellungen vornehmen.

Abbildung 14: ibaLink-VME (P2P)-Modul, erweiterter Modus

Erweitert

Digitalsignale swappen

Digitalsignale können invertiert werden (True/false)

Digitalsignale lesen als

Für den Zugriff auf die Digitalsignale können Sie wählen, ob die Digitalsignale als 8, 16 oder 32 Bit-Pakete gelesen werden sollen. Mit dieser Einstellung ändert sich auch die Nummerierung der Bits in der Tabelle der Digitalsignale.

Anzahl Analog-/Digitalsignale

Mit der Einstellung der Anzahl von Analog- und Digitalsignalen bestimmen Sie die Länge der Signaltabellen. Die Werte sollten zur Einstellung unter "FOB – S2 Drehschalter" passen (gleich oder kleiner).

Hinweis

Ist die Schalterstellung von S2 "Range" C oder D, ist der erweiterte Modus automatisch aktiviert.

9.1.2.2 Verwendung des FOB Alarm-Moduls

Für Ausgänge von ibaPDA an ibaLink-VME sind ein FOB-Ausgangslink und eine LWL-Verbindung zum RX-Anschluss der ibaLink-VME erforderlich. Fügen Sie im ibaPDA I/O-Manager ein Modul "FOB Alarm" am verbundenen Link hinzu und spezifizieren Sie die gewünschten analogen und digitalen Ausgangssignale.

Das FOB Alarm-Modul kann auf Integer- oder Real-Modus eingestellt werden. Diese Einstellung muss zur Einstellung des DIP-Schalters DP1.3 auf der ibaLink-VME passen.

Eingänge Ausgänge Gruppen Allgemein 4 b	FOB alarm (33)	
⊡	Allgemein 🔨 Analog 🎵 Digital	
	Grundeinstellungen Modultyp FOB alarm Verriegelt False Aktiviert True Name FOB alarm Modul Nr. 33 Berechnungszeitbasis 10 ms	
	Minimale Ausgangszeitbas 50 ms Name als Präfix verwender False	
	Frweitert Hohe Genauigkeit False	
	V FOB Link-Modus Real V Integer Real	

Andere Dokumentation

Für weiter Informationen über das FOB Alarm-Modul nutzen Sie bitte das ibaPDA-Handbuch, Teil 2, Kapitel 7.3.17 Ausgangsmodul FOB Alarm.

9.1.3 Konfiguration im 32Mbit Flex-Modus

Im **32Mbit Flex-Modus** lässt sich die Anzahl der Signale flexibel in ibaPDA einstellen.

- 1. Starten Sie den ibaPDA Client und öffnen den I/O-Manager.
- Markieren Sie im Signalbaum (links) den Link der ibaFOB-D-Karte, an dem ibaLink-VME angeschlossen ist. Klicken Sie mit der rechten Maustaste auf den Link, dann öffnet sich ein Untermenü. Wählen Sie "Autom. Erkennung" aus.

ibaPDA erkennt die Baugruppe automatisch und zeigt sie im Signalbaum an.

 Sie können die Baugruppe auch manuell hinzufügen. Klicken Sie mit der rechten Maustaste auf den Link der ibaFOB-D-Karte, mit dem die Baugruppe verbunden werden soll und wählen "Modul hinzufügen" und aus der angezeigten Liste "ibaLink-VME" aus.

Anschließend wird die Baugruppe im Signalbaum angezeigt.

- Verschieben Sie die Baugruppe mit gedrückter Maustaste auf die Adresse (Link 1 15 unter dem Gerät), die mit dem Drehschalter S1 am Gerät eingestellt ist. Stellung 1 – F entspricht Adresse 1 – 15.
- 5. Parametrieren Sie die ibaLink-VME-Module im I/O-Manager:

+ iha I/Q-Manager					П	×
						^
:*• 🖻 🖺 🖯 🖯 🕂 🚺 🖣 🖬 🗲 🖯						
Eingänge Ausgänge Gruppen Allgemein	ink-VME (32)					
⊡						
🖬 🛱 Link 0	Nigemein 🔨 Analog ∬	Digital 🧼 Diagnose				
	Grundeinstellungen			-4		
The link 1	Modultyp	ibaLink-VME				
Link 2	Verriegelt	False				
	Aktiviert	True				
Kickon um Madul anz füran	Name	ibaLink-VME				
The Casture	Modul Nr.	32	•			
in Million Dacaptore	Name als Präfix verwender	False		0		
	Zeitbasis	10 ms		**************************************		
Playback	Modul Struktur					
	Anzahl Analogsignale	128	•			
	Anzahl Digitalsignale	128				
Witten	Verbindung					
	IP Adresse	172.29.0.101				
	Automatisch aktivieren/dea	False				
Na	me		•			
De	r Name des Moduls					
				The second s		
Ko	nfiguration aus dem Gerät lese	en				
					_	
0	256 512 76	8 1024 1280 1536	1792 00 53	4 OK Übernehmen	Abbrec	hen

ibaLink-VME - Register "Allgemein"

Abbildung 15: ibaLink-VME – Register "Allgemein"

Grundeinstellungen

Verriegelt

Ein verriegeltes Modul kann nur durch berechtigte Benutzer verändert werden.

Aktiviert

Die Datenerfassung wird für dieses Modul aktiviert (True).

Name

Hier können Sie einen Modulnamen eingeben.

Modul Nr.

Modulnummer zur eindeutigen Referenzierung von Signalen, z. B. in Ausdrücken und ibaAnalyzer. Die Modulnummer wird von ibaPDA automatisch in aufsteigender Reihenfolge vergeben, kann aber vom Benutzer verändert werden.

Zeitbasis

Spezifiziert die Erfassungszeitbasis, die für ibaLink-VME verwendet wird: Sie können hier kleinere Zeiten als die allg. Erfassungszeitbasis einstellen, es sind Zyklen bis zu 25 µs (abhängig von der Anzahl der Signale) möglich.

Modulstruktur

Anzahl Analogsignale
 Festlegung der Anzahl der Analogsignale f
ür dieses Modul.

Anzahl Digitalsignale

Festlegung der Anzahl der Digitalsignale für dieses Modul.

Verbindung

IP-Adresse

IP-Adresse des Geräts (nicht veränderbar)

□ Automatisch aktivieren/deaktivieren

True: ibaPDA startet die Erfassung trotz eines fehlenden Gerätes. False: ibaPDA startet die Erfassung nicht, wenn keine Verbindung zum Gerät besteht

Weitere Funktionen

Konfiguration aus dem Gerät lesen Liest die zuletzt gespeicherte Konfiguration aus dem Gerät

Geänderte Einstellungen werden mit einem Klick auf <OK> oder <Übernehmen> übernommen.

ibaLink-VME – Register "Analog"

iba	ibaLink-VME (32)												
	Allgemein	\sim Analog	∬ Digita	I 🧼 Diagnose									
	Name					Einheit	Gain	Offset	Adresse	Datentyp	Aktiv	Istwert	
0	[1		1	0	0x0	FLOAT	V		^
1							1	0	0x4	FLOAT			
2							1	0	0x8	FLOAT			
3							1	0	0xC	FLOAT			
4							1	0	0×10	FLOAT			
5							1	0	0x14	FLOAT			
6							1	0	0x18	FLOAT			
7							1	0	0x1C	FLOAT			
									0.00	CLOUT.			

Abbildung 16: ibaLink-VME – Register "Analog"

Name

Sie können einen Signalnamen eingeben und zusätzlich zwei Kommentare, wenn Sie auf das Symbol Z im Feld Signalnamen klicken.

Einheit

Hier können Sie eine physikalische Einheit eintragen.

Gain / Offset

Die Werte in den Spalten Gain und Offset dienen der Skalierung normierter Werte auf physikalische Größen.

□ Adresse

Die Telegramme werden byteweise verwaltet und über einen Byte-Offset identifiziert. Der Parameter "Adresse" gibt die Stelle des Bytes an, in dem sich das gewünschte Signal befindet.

Datentyp

Der Datentyp kann aus einem Popup-Menü ausgewählt werden.

	Datentyp A
)	FLOAT 🔽
F	BYTE 决
3	INT
	WORD
•	DINT
j	DWORD
)	FLOAT
ŀ	INT_B
,	WORD_B
,	DINT_B
2	DWORD_B
5	FLOAT_B

i

Hinweis

Je nach Datentyp ändert sich die Adresse. Wählen Sie zunächst den Datentyp für jedes Signal aus. Klicken Sie in der Kopfzeile auf "Adresse", dann werden die Adressen automatisch angepasst, je nach Größe der Datentypen.

Aktiv

Nur aktivierte Signale werden erfasst. Wird die Anzahl der Signale reduziert, kann die Abtastfrequenz erhöht (bzw. Zeitbasis reduziert) werden.

Istwert

Anzeige des aktuell erfassten Wertes (nur verfügbar, wenn die Messung läuft).

ibaLink-VME – Register "Digital"

iba	aLink-VME (32)					
1	Allgemein 🔨 Analog 🗍 Digital 🧼 Diagnose					
	Name	Adresse	Bit-Nr.	Aktiv	Istwert	
0		0x200	0	V		^
1		0x200	1			
2		0x200	2			
3		0x200	3			
4		0x200	4			
5		0x200	5			
6		0x200	6			
7		0x200	7			
8		0x201	0			

Abbildung 17: ibaLink-VME – Register "Digital"

Name, Aktiv, Istwert

siehe Register "Analog".

Adresse, Bit-Nr.

Diese Spalte, zusammen mit der Spalte Bit-Nr., spezifiziert die Adresse des Signals.

ibaLink-VME - Register "Diagnose"

ibaLink-VME (32)	
Allgemein 🔨 Analog 👖 Digital 🧼 Diagnose	`
Allgemein	
Hardware-Version: A0	FPGA-Version: v01.00.0020
Firmware-Version: v01.01.007-RC2	Seriennummer: 000007
Firmware schreiben	Auf Werkseinstellungen zurücksetzen
VME	
VME-Adressmodus: A32	Konsistenter Modus: Off
VME-Basisadresse: 0xC7000000	ID-LED: Einschalten

Abbildung 18: ibaLink-VME – Register "Diagnose"

Bereich Allgemein

Im Bereich "Allgemein" finden Sie Informationen zu Version und Seriennummer der angeschlossenen ibaLink-VME-Baugruppe

Firmware schreiben

Hier gelangen Sie zu einem Browserfenster, in dem Sie die Firmware auswählen

können. Das Laden der Firmware dauert einige Minuten. Nach dem Laden werden Sie aufgefordert ibaLink-VME, d.h. das Rack, in dem die Baugruppe steckt, zurückzusetzen.

 Auf Werkseinstellungen zur
ücksetzen Die Konfigurationsdaten werden gelöscht.

Bereich VME

Im Bereich "VME" finden Sie Informationen zum eingestellten Adressierungsmodus der Karte, zur VME-Basisadresse und ob Konsistenzmodus aktiviert ist oder nicht. Außerdem kann die ID-LED angesteuert werden.

Ausgänge

Das Modul, das Sie auf der Eingangsseite (unter "Eingänge") entweder automatisch detektiert oder manuell hinzugefügt haben, wird auch auf der Ausgangsseite (unter "Alarme" bzw. "Ausgänge") angezeigt. Für die analogen und digitalen Signale werden automatisch die Register Analog bzw. Digital angelegt.

Abbildung 19: Gerät im Alarm-Modulbaum

Im Register "Digital" werden nur digitale Signale, im Register "Analog" nur analoge Signale angezeigt. Mit Hilfe des Ausdruckseditors können den Ausgängen Signale zugewiesen werden.

Eingänge Ausgänge Gruppen Allgemein	▶ ibaLink-VME (32)
Output Link 0	Allgemein 🔨 Analog 👖 Digital 🧼 Diagnose
ibaLink-VME (32) 	Name Ausdruck
🖽 🖷 Output Link 1	0 f *
🖶 🛱 Output Link 2	1 f *
⊡ ··· 🛱 Output Link 3	2 f *
Klicken, um Modul anzufugen	3

Abbildung 20: Ausgangssignale definieren

iba

9.2 ibaLogic-Applikation

In der Kombination von ibaLink-VME und ibaLogic werden beide Kartenausgänge jeweils mit einem Eingang an der ibaFOB-2io-D-Karte verbunden. Abhängig von der ibaLogic-Version und der verwendeten LWL-Karte können die nachfolgend beschriebenen Modi verwendet werden.

Für Ausgabesignale aus ibaLogic an ibaLink-VME, muss der LWL-Eingang von Channel 1 der ibaLink-VME-Karte mit dem LWL-Ausgang der FOB-Karte (z.B. ibaFOB-2io-D) im ibaLogic-PC verbunden werden.

Abbildung 21: ibaLink-VME mit ibaLogic

9.2.1 Konfiguration ibaLogic-V3

Es werden nur die 3Mbit-Betriebsarten (S1 = 0, 1, 8, 9) und die Karten ibaFOB-S oder -X unterstützt.

Andere Dokumentation

Sehen Sie dazu das Handbuch "ibaLink-SM-128V-i-2o".

54

9.2.2 Konfiguration ibaLogic-V4

Neben den 3Mbit-Betriebsarten wird auch der 32Mbit P2P-Modus unterstützt.

Stellen Sie im I/O-Konfigurator unter dem angeschlossenen Link den Modus ein, der der Betriebsart der ibaLink-VME entspricht. Bei bidirektionaler Verbindung muss für Ein- und Ausgangslink derselbe Modus ausgewählt werden.

Zuordnung der Verbindungsmodi bei ibaLogic unter Windows:

Aktivieren Sie die Links unter einer ibaFOB-Karte.

Verbindungseinstellungen										
	Aktivierer	n Eingang	Sigr	nale	Ausgang		Signa	le	Gepuffert	Async
Link0	✓	Integer	64	*	Integer	¥	64	*		
Link1		Integer	64	×	Integer	¥	64	*		
Link2			64	*	Integer	*	64	*		
Link3		32MBit Integer 1000µs 🕓	- 64	*	Integer	~	64	*		
		Integer Real S5 Real 32MBit Integer 1000µs 32MBit Real 1000µs 32MBit Integer 100µs 32MBit Real 100µs 32MBit Integer 50µs								

Abbildung 22: ibaFOB Verbindungseinstellungen unter Windows

ibaLogic Link-Modus	ibaLink-VME Schalterstellung	Anmerkung
Integer	S1 = 8, S2 = x	3Mbit P2P DIP-Schalter DP 1.1/1.3 = OFF
Real	S1 = 8, S2 = x	3Mbit P2P DIP-Schalter DP 1.1/1.3 = ON
S5 Real	-	-
32 MBit Integer 1000µs	S1 = 4, S2 = 4	32Mbit P2P (1024 Integer)
32 MBit Real 1000µs	S1 = 4, S2 = A	32Mbit P2P (512 Real)
32 MBit Integer 100µs	S1 = 4, S2 = 1	32Mbit P2P (128 Integer)
32 MBit Real 100µs	S1 = 4, S2 = 7	32Mbit P2P (64 Real)
32 MBit Integer 50µs	S1 = 4, S2 = 0	32Mbit P2P (64 Integer)

Tabelle 5: Einstellung ibaLogic (WIN) Verbindungsmodi

iba

Zuordnung der Verbindungsmodi bei ibaLogic unter ibaPADU-S-IT:

Es sind die Ein- und Ausgangsressourcen "FiberOptics_IO" zu verwenden.

🖶 1/0-Konfigurator	∧	
SIT-16-00074 SIT-16-00074 SIT-16-00074 SIT-16 SIT-16	Hardware-Konfiguration Signale zuweisen Allgemeine Einstellungen Interrupt-Quelle: Interrupt-Quelle: S-IT-16-000074 Zeitbasis: 1 ms Treiberneustart erzwingen Soft-SPS Turbomodus aktivieren Messung Moduleinstellungen FiberOptics_IO V Aktiviert Gepufferter Zugriff	
	ibaLogic Eingangseinstellungen Link-Protokoll Signaltyp 3,3 MBit 32 MBit 200µs 32 MBit 50µs 32 MBit 100µs Signaltyp Ink-Protokoll Extern 32 MBit 200µs Signaltyp Integer Peal Ausgangseinstellungen Link-Protokoll Extern 32 MBit 200µs 3,3 MBit 32 MBit 400µs 3,2 MBit 50µs 32 MBit 100µs 32 MBit 100µs 32 MBit 100µs 32 MBit 100µs 32 MBit flex	

Abbildung 23: LWL-Verbindungseinstellungen unter ibaPADU-S-IT

ibaLogic Link-Protokoll	Signaltyp	ibaLink-VME Schalterstellung	Anmerkung
Extern		-	-
3,3 MBit	Integer	S1 = 8, S2 = x	DIP-Schalter DP1.1/1.3 gemäß
	Real	S1 = 8, S2 = x	dem Signaltyp einstellen
32 MBit 50µs	Integer	S1 = 4, S2 = 0	32Mbit P2P (64 Integer)
32 MBit 100µs	Integer	S1 = 4, S2 = 1	32Mbit P2P (128 Integer)
	Real	S1 = 4, S2 = 7	32Mbit P2P (64 Real)
32 MBit 200µs	Integer	S1 = 4, S2 = 2	32Mbit P2P (256 Integer)
	Real	S1 = 4, S2 = 8	32Mbit P2P (128 Real)
32 MBit 400µs	Integer	S1 = 4, S2 = 3	32Mbit P2P (512 Integer)
	Real	S1 = 4, S2 = 9	32Mbit P2P (256 Real)
32 MBit 1000µs	Integer	S1 = 4, S2 = 4	32Mbit P2P (1024 Integer)
	Real	S1 = 4, S2 = A	32Mbit P2P (512 Real)

Tabelle 6 Einstellung ibaLogic (PADU-S-IT) Verbindungsmodi

9.3 Kaskadenbetrieb 3Mbit

Dieser Aufbau erlaubt die Kaskadierung von bis zu acht kaskadefähigen Geräten an einem LWL-Strang (nur Channel 1). Kaskadefähige Geräte sind: ibaLink-VME, ibaLink-SM128V, ibaPADU-8/-16/-32 und ibaNet750. Die Baugruppe ibaLink-SM-64 gehört nicht dazu, da diese ein anderes Kaskadierkonzept enthält.

Die mögliche Gesamtdatenmenge, die über einen LWL-Link übertragen werden kann, also 64 analoge und digitale Signale, wird in 8 Container mit je 8 analogen und 8 digitalen Signalen unterteilt. Im Kaskadenbetrieb werden diese 8 Container auf mehrere Teilnehmer aufgeteilt.

Jede ibaLink-VME-Karte in der Kaskade überträgt 8 Container von ihrem LWL-Eingang an ihren LWL-Ausgang. An Channel 1 wird durch Schalter S2 (Range) eingestellt, wie viele Container aus der *lokalen* VME-Bus-Schnittstelle auf den LWL kopiert werden. Mit dem Schalter S3 (Address) wird eingestellt, ab welcher Adresse die Daten auf den LWL-Bereich kopiert werden:

Schalter S1 (Mode) muss für den Kaskadenbetrieb auf 0 oder 1 gestellt werden.

Beispiel 1: Kette, bestehend aus 8 ibaLink-VME mit gleichgroßen Bereichen (Range)

Abbildung 24

Kaskadenbetrieb mit 8 x ibaLink-VME

Jede Karte sendet nur acht Signale, belegt also jeweils nur einen Container (Range = 1). Welcher Container belegt werden soll, wird mit dem Adressschalter bestimmt. Hinter der letzten ibaLink-VME-Karte sind schließlich alle Container mit Daten gefüllt. Der LWL-Eingang der ibaFOB-Karte empfängt 8 x 8 = 64 Signale.

Über den zweiten Link (Channel 2) können unabhängig davon 64 Signale übertragen werden.

Beispiel 2: Kette, bestehend aus 3 ibaLink-VME mit unterschiedlichen Bereichen

In diesem Beispiel sind nur drei ibaLink-VME-Karten kaskadiert, die z.T. unterschiedlich viele Daten übermitteln.

Karte #1 sendet 2 Container und belegt die ersten beiden Bereiche.

Karte #2 sendet 2 Container und belegt die nächsten beiden Bereiche.

Karte #3 sendet 4 Container, aber der Adressschalter ist auf 4 gestellt. Dadurch wird ein Bereich, der bereits mit Daten von Karte #2 gefüllt wurde, überschrieben. Da der letzte Teilnehmer in einer Kaskade dominiert, geht ein Container von Karte #2 verloren. Um dies zu vermeiden, muss der Adressschalter von Karte #3 auf 5 gestellt werden.

Tipp

Die Daten werden nicht nur am optischen Bus weitergereicht, sondern gelangen zusätzlich in den Eingabebereich des DPR^{*)} der ibaLink-VME. Im Beispiel 2 empfängt Karte #2 16 Werte von Karte #1 und Karte #3 je 16 Werte von Karte #1 und Karte #2.

Überlappen sich die Bereiche (z.B. wie oben, wo Karte #2 einen Range von 2 hat), dann gelangen zwar 2 x 8 Werte in den DPR von Karte #3, jedoch überschreibt Karte #3 die letzen 8 Werte von Karte #2 mit eigenen Werten, so dass an der FOB-Karte nur noch 8 Werte von Karte #2 ankommen, obwohl die Werte von Karte #2 zu Karte #3 übertragen wurden.

Abbildung 25: Kaskadenbetrieb mit 3 x ibaLink-VME

^{*)} Dual Port RAM

Hinweis

Wir empfehlen die Reihenfolge der Kaskade (Vorgänger → Nachfolger) in aufsteigender Adressreihenfolge vorzunehmen, obwohl dies nicht notwendigerweise der Fall sein muss.

Bei Überlappungen überschreiben die Nachfolger die Daten der Vorgänger, unabhängig von den Adressen.

9.4 Kaskadenbetrieb 32Mbit Flex

Dieser Aufbau erlaubt die Kaskadierung von bis zu 15 ibaLink-VME-Karten oder anderer iba-Geräte, welche den Flex-Modus unterstützen, in einem LWL-Ring (nur Channel 1).

Durch Schalter S3 (Address) wird eine eindeutige Geräteadresse 1...F, entspricht Adresse 1...15, eingestellt.

Die Datenmenge pro Teilnehmer ist nicht wie im 3Mbit-Modus durch Schalter festgelegt, sondern wird dynamisch verteilt. Je nach der in ibaPDA parametrierten Anzahl von analogen und digitalen Signalen und der pro Gerät eingestellten Zeitbasis wird die Datenmenge durch ibaPDA berechnet.

Die maximale Gesamtdatenrate wird durch den LWL bestimmt und muss daher durch die Anzahl der Geräte und Datenmenge pro Gerät in dem Ring geteilt werden. Richtgröße ist ca. 3000 Bytes pro ms.

Die einzelnen Geräte in der Kaskade können mit unterschiedlichen Zugriffszyklen arbeiten, jedoch müssen diese ein ganzzahliges Vielfaches des kleinsten Zyklus sein.

Wird die maximale Datenrate überschritten, so gibt ibaPDA eine Fehlermeldung aus mit dem Hinweis die Zeitbasis zu erhöhen oder die Datenmenge zu verkleinern.

iba

9.5 E/A-Betrieb

Die ibaLink-VME-Baugruppe dient hierbei als E/A-Erweiterung für SPS-Systeme.

Um Werte aus dem VMEbus-System über die ibaLink-VME-Karte auszugeben, wird das Gerät ibaPADU-8-O eingesetzt. Umgekehrt, für die Eingaberichtung werden ibaPADU-8-Geräte verwendet. Bis zu acht Geräte sind an Channel 1, jeweils in Ein- und Ausgaberichtung anschließbar. An Channel 2 können ebenfalls acht Ausgabegeräte angeschlossen werden.

Als Ein-Ausgabegeräte können auch die Komponenten der ibaNet750-BM-Reihe (WAGO / Beckhoff) eingesetzt werden. Außerdem kann auch ibaPDA oder ibaLogic angeschlossen werden.

Am optischen Bus sind nur Linienstrukturen zugelassen.

Abbildung 27: ibaLink-VME im E/A-Betrieb mit ibaPADU-8 und ibaPADU-8-O

Die Mischung von Kaskaden- und E/A-Betrieb an einer Karte ist zulässig. So könnte z.B. Channel 1 als Kaskade und Channel 2 in reiner Ausgaberichtung betrieben werden.

10 Die VMEbus-Schnittstelle

Die Karte belegt im VMEbus 256 kBytes Adressraum. Die VME-Basisadresse und der Adressierungsmodus sind per DIP-Schalter auf der Karte einstellbar.

Aus Sicht vom VMEbus können WORDs und DWORDs in Big Endian oder Little Endian Byte-Order gelesen und geschrieben werden. Die ibaLink-VME-Karte akzeptiert beide Formate. Die zu verwendende Byte-Reihenfolge ist am DIP-Schalter einzustellen.

Welchs Datenformat (Integer oder Float) gesendet wird, muss vor der Installation der ibaLink-VME definiert werden. Definieren Sie das Format mittels DIP-Schalter für jeden LWL-Link. Für jeden der beiden Links (Channel 1, 2) können andere Datentypen definiert werden.

Hinweis

Wenn 32Mbit Flex verwendet wird, werden alle Einstellungen in ibaPDA vorgenommen. DIP-Schalter werden hier nicht verwendet.

Im 3Mbit-Modus können die Digitalsignale mit zwei verschiedenen Methoden gesendet werden – Wortweise (1 DWORD für jedes Signal, wobei hier jeweils nur das Bit 0 den Signalwert darstellt) oder gepackt in einer 8 Byte-Bitmaske. Die ibaLink-VME-Karte verodert die Werte dieser beiden Methoden intern. Da die Werte mit 0 vorbelegt sind, braucht nur bei einem Wechsel der Methode darauf geachtet zu werden, dass die Werte der anderen Methode jeweils mit 0 vorbesetzt sind.

Hinweis

Nach dem Einschalten und einem VMEbus SYSRESET ist die Baugruppe initialisiert und betriebsbereit.

Nach einem Firmware-Update muss die Karte kurzzeitig von der Spannungsversorgung genommen werden, damit die neue Firmware wirksam ist.

10.1 Belegung der Adressen

Der Adressbereich aus Sicht des VMEbus hat eine Größe von 256KB [A17...A0]. Der Bereich wird von den absoluten Adressen belegt, die mittels DIP-Schalter eingestellt werden (A39...A18). Die Bedeutung und Verwendung der DIP-Schalter hängt vom VME-Adressierungsmodus ab:

A16-Modus: nicht unterstützt

A24-Modus: DIP-Schalter [A23...A18] verwendet

A32-Modus: DIP-Schalter [A31...A18] verwendet

A40-Modus: DIP-Schalter [A39...A18] verwendet

A64-Modus: DIP-Schalter [A39...A18] verwendet, speziell A[63:42], A[41:18]=0

10.2 Allgemeiner Überblick

Der Adressbereich ist kompatibel mit der SM128-Karte. Reservierte Bereiche werden beim Lesen auf "0" gesetzt. Schreiben in reservierte Bereiche hat keine Auswirkungen.

Offset Range	Verwendung
0x0000-0x00FF	Steuerung/Status/ Versionsregister
0x0100-0x0FFF	Reserve
0x1000-0x3FFF	SM128 Empfangs-/Sende-Daten (3Mbit)
0x4000-0x4FFF	Reserve
0x5000-0x5F37	3896 Byte Puffer gespiegelt nach 0xC000-0xCF37 (Teil des 4K Sendepuffers)
0x5F38-0x5FFF	Reserve
0x6000-0x607F	128 Byte Puffer gespiegelt nach 0xCF38-0xCFB7 (Teil des 4K Sendepuffers)
0x6080-0x6FFF	Reserve
0x7000-0x7FFF	4K Sendepuffer Digitalausgabe DWORD (32Mbit)
0x8000-0x8FFF	4K Empfangspuffer (32Mbit P2P und Flex)
0x9000-0xBFFF	Reserve
0xC000-0xCFFF	4K Sendepuffer (32Mbit P2P und Flex)
0xD000-0x3FFFF	Reserve

Allgemeiner Überblick über den 256K Adressbereich:

62

10.3 Steuerung-, Status-, Versionsregister

Offsets, die hier nicht genannt werden, sind reserviert und sollten nicht beschrieben werden. Register können nur gelesen werden, falls nicht anders erwähnt.

Bei SM128-kompatiblen Modi, enthalten die Versionsregister SM128 Identifikations-Strings um die Kompatibilität mit der Vorgängerkarte SM128 zu erhöhen.

Offset	Format	Bedeutung	
0x08	byte	Schreibe 0x5A für Hardware-Reset (Speicher werden auf 0 gesetzt)	
0x60	12 bytes	Firmware-Bezeichnung "SM128-VME" (SM128) Firmware-Bezeichnung "ibaLink-VME_" (Flex,)	
0x6C	4 bytes	Firmware-Stand "F1.5" (SM128) Firmware-Stand "F2.0" oder andere (Flex,)	
0xE4	byte	LED-Anzeige (1=LED an 0=LED aus) Nur bit 4 ist beschreibbar Bit4=Software-gesteuerte LED (weiß)	
0xE8	byte	 Bit0 : 0=Konsistenzmodus ausgeschaltet 1=Konsistenzmodus eingeschaltet (spiegelt die Stellung der DIP-Schalter wider) Bit5 : 1 = Lese konsistenten Datenblock Bit7 : 1 = Schreibe konsistenten Datenblock 	
0xF0	byte	LWL Mode = 01: 3Mbit = 03: 32Mbit P2P = 0B: 32Mbit Flex	

iba

10.4 SM128 RX/TX

Hinweis: byte: Das Format wird nicht beeinflusst vom Endianess DIP-Schalter, Dword: Das Format hängt vom Endianess DIP-Schalter ab

Offset	Format	Bedeutung		
0x1801	byte	LWL Input Status & DIP Status Channel 1		
		Bit0: 0=kein Empfang (Fehler) 1=Link ok (Telegrammempfang)		
		Bit6: 0=RX Daten werden im Little Endian-Format gespeichert 1=RX Daten werden im Big Endian-Format gespeichert (spiegelt die Stellung der DIP-Schalter wider)		
		Bit7: 0=RX Daten werden im 16bit Integer-Format gespeichert 1=RX Daten werden im 32bit IEEE Float (Real)-Format gespeichert (spiegelt die Stellung der DIP-Schalter wider)		
0x1803	byte	I WI Output Status & DIP Status Channel 1		
0,1000	byte	Bit6: 0=TX1 Daten werden im Little Endian-Format geschrieben 1=TX1 Daten werden im Big Endian-Format geschrieben (spiegelt die Stellung der DIP-Schalter wider)		
		Bit7: 0=TX1 Daten werden im 16bit Integer-Format geschrieben 1=TX1 Daten werden im 32bit IEEE Float (Real)-Format geschrieben		
		(spiegelt die Stellung der DIP-Schalter wider)		
0x1A03	byte	LWL Output Status & DIP Status Channel 2		
		Bit6: 0=TX2 Daten werden im Little Endian-Format geschrieben 1=TX2 Daten werden im Big Endian-Format geschrieben (spiegelt die Stellung der DIP-Schalter wider)		
		Bit7: 0=TX2 Daten werden im 16bit Integer-Format geschrieben 1=TX2 Data werden im 32bit IEEE Float (Real)-Format geschrieben		
		(spiegelt die Stellung der DIP-Schalter wider)		
0x2400 0x2407	8 bytes	Channel 1 - 64 digitale Inputs, Bit-weise zusammengefasst zu 8 Bytes. Erstes Signal ist im niederwertigen Bit.		
0x2420 0x2427	8 bytes	Channel 1 - 64 digitale Outputs, Bit-weise zusammengefasst zu 8 Bytes.		
		Erstes Signal ist im niederwertigen Bit. Der aktuelle Output wird ODER-verknüpft mit dem niederwertigen Bit des dazugehörigen DWORD im Bereich 0x3E00.		
0x2428 0x242F	8 bytes	Channel 2 - 64 digitale Outputs, Bit-weise zusammengefasst zu 8 Bytes. Erstes Signal ist im niederwertigen Bit. Der aktuelle Output wird ODER-verknüpft mit dem niederwertigen Bit des dazugehörigen DWORD im Bereich 0x3F00.		
0x3000 0x30FF	64 dwords	Channel 1 - 64 analoge Inputs, jeder Input belegt 1 DWORD. Die 2 höherwertigeren Bytes werden im Integer-Modus auf 0 gesetzt, (kein automatisches Vorzeichen bei 32 bits!)		
0x3800 0x38FF	64 dwords	Channel 1 - 64 analoge Outputs, jeder Output belegt 1 DWORD. Die 2 höherwertigeren Bytes werden im Integer-Modus nicht verwendet.		
0x3900 0x39FF	64 dwords	Channel 2 - 64 analoge Outputs, jeder Output belegt 1 DWORD. Die 2 höchstwertigen Bytes werden im Integer-Modus nicht verwendet		

Offset	Format	Bedeutung
0x3E00 0x3EFF	64 dwords	Channel 1 - 64 digitale Outputs, jedes Signal belegt 1 DWORD, es wird nur das niederwertigste Bit verwendet. Der aktuelle Output wird ODER-verknüpft mit dem dazugehörigen Bit im Bereich 0x2420.
0x3F00 0x3FFF	64 dwords	Channel 2 - 64 digitale Outputs, jedes Signal belegt 1 DWORD, es wird nur das niederwertigste Bit verwendet. Der aktuelle Output wird ODER-verknüpft mit dem dazugehörigen Bit im Bereich 0x2428.

Hinweise zum Konsistenzmodus

Wenn der Konsistenzmodus aktiviert ist, werden die Ausgangsdaten nur an den LWL-Ausgang gesendet, wenn das TX1/TX2 Commit Bit im Steuer-Register 0xE8 gesetzt ist. Ein Update des TX-Puffers sollte nicht schneller als 10 µs erfolgen!

Wenn der Konsistenzmodus aktiviert ist, erfolgt ein Update der Eingangsdaten nur mit den letzten empfangenen Daten, wenn das RX1 Get Bit im Steuerregister 0xE8 gesetzt ist.

10.5 4K RX/TX Puffer

Diese Puffer werden beim Empfang und Senden im 32Mbit Flex- und 32Mbit P2P-Modus benutzt.

Die Puffergröße ist jeweils 4 K. Das Format hängt vom jeweiligen Modus ab.

10.5.1 32Mbit P2P

In dieser Betriebsart werden 2 Formate verwendet: ein freies Format, bei dem die Daten als eine Folge von Bytes betrachtet werden (Drehschalter Range S2 = C oder D) und andere Standard 32Mbit-Betriebsarten, wobei die Daten in analoge (Integer oder Real) und digitale Bits aufgeteilt werden.

- □ Freies Format: die ersten 4024 Bytes des Puffers werden unverändert gesendet/empfangen.
- Standard-Format: die ersten 2048 Bytes werden verwendet, um die analogen Werte zu empfangen/senden. Die Anordnung der Byte-Reihenfolge (Endianness) entspricht der DIP-Schalterstellung. Die digitalen Bits werden beginnend mit dem Offset 3968 (0xF80) angehängt (in Bytes zusammengefasst). Alternativ können Binärdaten im Format "DWORD" ab Offset 0x7000 gesendet werden. Pro Bit wird ein DWORD gesendet mit LSB = true/false. Diese Binärdaten werden **nicht** verodert mit den gepackten Binärausgaben (0xCF80).

10.5.2 32Mbit Flex

Im 32Mbit Flex-Modus steht der gesamte 4K-Empfangspuffer für die Speicherung der Empfangsdaten zur Verfügung. Maximal 4060 Bytes können jedoch nur für die Übertragung auf dem Lichtwellenleiter ausgewählt werden. Auf der Empfangsseite können bis zu 4060 Bytes empfangen werden.

Das Datenformat (Little Endian/Big Endian, Bytes, Reals, etc.) wird in ibaPDA konfiguriert. Die DIP-Schalter für die Einstellung der Byte-Reihenfolge bzw. Real oder Integer werden im 32Mbit Flex-Modus nicht verwendet.

11 Technische Daten

11.1 Hauptdaten

Hersteller	iba AG, Deutschland		
Bestellnummer	ibaLink-VME: 14.132000 ibaLink-VME-16Bit: 14.132001 (auf Anfrage)		
Kommunikationskanäle	Channel 1: Ein-/Ausgang Channel 2: Ausgang		
ibaNet-Protokolle	3Mbit, 32Mbit, 32Mbit Flex		
Anschlusstechnik	2 ST-Steckverbinder für RX und TX; iba empfiehlt die Verwendung von LWL mit Multimode- Fasern des Typs 50/125 µm oder 62,5/125 µm; Angaben zur Kabellänge siehe Kap. 11.3		
Sendeschnittstelle (TX)			
Sendeleistung	50/125 µm LWL-Faser	-19,8 dBm bis -12,8 dBm	
	62,5/125 µm LWL-Faser	-16 dBm bis -9 dBm	
	100/140 µm LWL-Faser	-12,5 dBm bis -5,5 dBm	
	200 µm LWL-Faser	-8,5 dBm bis -1,5 dBm	
Temperaturbereich	-40 °C bis 85 °C		
Lichtwellenlänge	850 nm		
Empfangsschnittstelle (RX)			
Empfangsempfindlichkeit ¹	100/140 µm LWL-Faser:	-33,2 dBm bis -26,7 dBm	
Temperaturbereich	-40 °C bis 85 °C		
Galvanische Trennung	über LWL		
Spannungsversorgung	5 V über VMEbus		
Stromaufnahme	Max: 1 A / 5 V		
Anzeigen	8 LEDs für Betriebszustand		
Schutzart	keine		
Feuchteklasse	F, keine Betauung zugelassen		
Kühlung	Luftselbstkühlung		
Montage	Belegt einen Einbauplatz des VME-Baugruppenträgers		
Betriebstemperaturbereich	0 °C bis 50 °C		
Lagertemperaturbereich	-25 °C bis 70 °C		
Transporttemperaturbereich	-25 °C bis 70 °C		
Maße in mm (Breite x Höhe x Tiefe) Frontplatte	1 VME Slot x 233 mm x 160 mm 6 HE / 4TE		
Gewicht (inkl. Verpackung und Dokumentation)	ca. 0,5 kg		

¹ Angaben zu anderen LWL-Faserdurchmessern nicht spezifiziert

Supplier's Declaration of Conformity 47 CFR § 2.1077 Compliance Information

Unique Identifier: 14.132000 ibaLink-VME

Responsible Party - U.S. Contact Information

iba America, LLC 370 Winkler Drive, Suite C Alpharetta, Georgia 30004

(770) 886-2318-102 www.iba-america.com

FCC Compliance Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

11.2 Maßblatt

Abbildung 28: Maßblatt (Maße in mm)

11.3 Beispiel für LWL-Budget-Berechnung

Als Beispiel dient eine LWL-Verbindung von einer ibaFOB-io-Dexp-Karte (LWL-Sender) zu einem ibaBM-PN-Gerät (LWL-Empfänger).

Abbildung 29: Beispielverbindung für LWL-Budget-Berechnung

Das Beispiel bezieht sich auf eine Punkt-zu-Punkt-Verbindung mit einer LWL-Faser des Typs 62,5/125 µm. Die verwendete Lichtwellenlänge beträgt 850 nm.

Die Spanne der Minimal- und Maximalwerte der Sendeleistung bzw. Empfangsempfindlichkeit ist bauteilbedingt und u. a. abhängig von Temperatur und Alterung.

Für die Berechnung sind jeweils die spezifizierte Sendeleistung des Sendegeräts und auf der anderen Seite die spezifizierte Empfangsempfindlichkeit des Empfängergeräts einzusetzen. Sie finden die entsprechenden Werte im jeweiligen Gerätehandbuch im Kapitel "Technische Daten" unter "ibaNet-Schnittstelle".

Spezifikation ibaFOB-io-Dexp:

Sendeleistung der LWL-Sendeschnittstelle				
LWL-Faser in µm Min. Max.				
62,5/125	-16 dBm	-9 dBm		

Spezifikation ibaBM-PN:

Empfindlichkeit der LWL-Empfangsschnittstelle		
LWL-Faser in µm	Min.	Max.
62,5/125	-30 dBm	

Spezifikation des Lichtwellenleiters

Zu finden im Datenblatt des verwendeten LWL-Kabels:

LWL-Faser	62,5/125 µm
Steckerverlust	0,5 dB Stecker
Kabeldämpfung bei 850 nm Wellenlänge	3,5 dB / km

Gleichung zur Berechnung des Leistungsbudgets (A_{Budget}):

$$A_{Budget} = |(P_{Receiver} - P_{Sender})|$$

P_{Receiver} = Empfindlichkeit der LWL-Empfangsschnittstelle

P_{Sender} = Sendeleistung der LWL-Sendeschnittstelle

Gleichung zur Berechnung der Reichweite der LWL-Verbindung (I_{Max}):

$$l_{Max} = \frac{A_{Budget} - (2 \cdot A_{Connector})}{A_{Fiberoptic}}$$

A_{Connector} = Steckerverlust

A_{Fiberoptic} = Kabeldämpfung

Berechnung für das Beispiel ibaFOB-io-Dexp -> ibaBM-PN im Optimalfall:

 $A_{Budget} = |(-30 \ dBm - (-9 \ dBm))| = 21 dB$

$$l_{Max} = \frac{21dB - (2 \cdot 0.5dB)}{3.5 \frac{dB}{km}} = 5.71 \text{km}$$

Berechnung für das Beispiel ibaFOB-io-Dexp -> ibaBM-PN im schlechtesten Fall:

 $A_{Budget} = |-30 \ dBm - (-16 \ dBm)| = 14 dB$

$$l_{Max} = \frac{14dB - (2 \cdot 0.5dB)}{3.5 \frac{dB}{km}} = 3.71 \text{km}$$

Hinweis

Bei einer Verbindung mehrerer Geräte als Kette (z. B. ibaPADU-8x mit 3 Mbit) oder als Ring (z. B. ibaPADU-S-CM mit 32Mbit Flex) gilt die maximale Entfernung jeweils für die Teilstrecke zwischen zwei Geräten. Die LWL-Signale werden in jedem Gerät neu verstärkt.

Hinweis

Bei Verwendung von LWL-Fasern des Typs $50/125 \ \mu m$ ist mit einer um ca. 30-40% verringerten Reichweite zu rechnen.

12 Support und Kontakt

Support

Telefon: +49 911 97282-14 Telefax: +49 911 97282-33 E-Mail: support@iba-ag.com

Hinweis

Wenn Sie Support benötigen, dann geben Sie die Seriennummer (iba-S/N) des Produktes an.

Kontakt

Zentrale

iba AG

Postfach 1828 DE-90708 Fürth

Tel.:+49 911 97282-0Fax:+49 911 97282-33E-Mail:iba@iba-ag.com

Versandadresse

iba AG Gebhardtstr. 10 90762 Fürth Deutschland

Regional und weltweit

Weitere Kontaktadressen unserer regionalen Niederlassungen oder Vertretungen finden Sie auf unserer Webseite

www.iba-ag.com.